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SUMMARY

The report gives a defining description of the programming
language Scheme. Scheme is a statically scoped and prop-
erly tail recursive dialect of the Lisp programming language
invented by Guy Lewis Steele Jr. and Gerald Jay Sussman.
It was designed to have an exceptionally clear and simple
semantics and few different ways to form expressions. A
wide variety of programming paradigms, including impera-
tive, functional, and object-oriented styles, find convenient
expression in Scheme.

The introduction offers a brief history of the language and
of the report.

The first three chapters present the fundamental ideas of
the language and describe the notational conventions used
for describing the language and for writing programs in the
language.

Chapters [] and [§] describe the syntax and semantics of
expressions, definitions, programs, and libraries.

Chapter [6] describes Scheme’s built-in procedures, which
include all of the language’s data manipulation and in-
put/output primitives.

Chapter [7] provides a formal syntax for Scheme written in
extended BNF, along with a formal denotational semantics.
An example of the use of the language follows the formal
syntax and semantics.

Appendix [A] provides a list of the standard libraries and
the identifiers that they export.

Appendix [B] provides a list of optional but standardized
implementation feature names.

The report concludes with a list of references and an al-
phabetic index.
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INTRODUCTION

Programming languages should be designed not by piling
feature on top of feature, but by removing the weaknesses
and restrictions that make additional features appear nec-
essary. Scheme demonstrates that a very small number of
rules for forming expressions, with no restrictions on how
they are composed, suffice to form a practical and efficient
programming language that is flexible enough to support
most of the major programming paradigms in use today.

Scheme was one of the first programming languages to in-
corporate first class procedures as in the lambda calculus,
thereby proving the usefulness of static scope rules and
block structure in a dynamically typed language. Scheme
was the first major dialect of Lisp to distinguish procedures
from lambda expressions and symbols, to use a single lex-
ical environment for all variables, and to evaluate the op-
erator position of a procedure call in the same way as an
operand position. By relying entirely on procedure calls
to express iteration, Scheme emphasized the fact that tail
recursive procedure calls are essentially GOTO’s that pass
arguments, thus allowing a programming style that is both
coherent and efficient. Scheme was the first widely used
programming language to embrace first class escape proce-
dures, from which all previously known sequential control
structures can be synthesized. A subsequent version of
Scheme introduced the concept of exact and inexact num-
bers, an extension of Common Lisp’s generic arithmetic.
More recently, Scheme became the first programming lan-
guage to support hygienic macros, which permit the syntax
of a block-structured language to be extended in a consis-
tent and reliable manner.

Background

The first description of Scheme was written in 1975 [34]. A
revised report [3I] appeared in 1978, which described the
evolution of the language as its MIT implementation was
upgraded to support an innovative compiler [32]. Three
distinct projects began in 1981 and 1982 to use variants
of Scheme for courses at MIT, Yale, and Indiana Univer-
sity [27, 23] [15]. An introductory computer science text-
book using Scheme was published in 1984 [3].

As Scheme became more widespread, local dialects be-
gan to diverge until students and researchers occasion-
ally found it difficult to understand code written at other
sites. Fifteen representatives of the major implementations
of Scheme therefore met in October 1984 to work toward
a better and more widely accepted standard for Scheme.
Their report, the RRRS [7], was published at MIT and In-
diana University in the summer of 1985. Further revision
took place in the spring of 1986, resulting in the R®RS [29].
Work in the spring of 1988 resulted in R*RS [9], which
became the basis for the IEEE Standard for the Scheme

Programming Language in 1991 [I8]. In 1998, several ad-
ditions to the IEEE standard, including high-level hygienic
macros, multiple return values and eval, were finalized as
the R5RS [2].

In the fall of 2006, work began on a more ambitious stan-
dard, including many new improvements and stricter re-
quirements made in the interest of improved portability.
The resulting standard, the R°RS, was completed in Au-
gust 2007 [I], and was organized as a core language and
set of mandatory standard libraries. The size and goals of
the R6RS, however, were controversial, and adoption of the
new standard was not as widespread as had been hoped.

In consequence, the Scheme Steering Committee decided in
August 2009 to divide the standard into two separate but
compatible languages — a “small” language, suitable for
educators, researchers and embedded languages, focused
on RPRScompatibility, and a “large” language focused on
the practical needs of mainstream software development
which would evolve to become a replacement for RSRS.
The present report describes the “small” language of that
effort.

We intend this report to belong to the entire Scheme com-
munity, and so we grant permission to copy it in whole or in
part without fee. In particular, we encourage implementors
of Scheme to use this report as a starting point for manuals
and other documentation, modifying it as necessary.
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DESCRIPTION OF THE LANGUAGE

1. Overview of Scheme

1.1. Semantics

This section gives an overview of Scheme’s semantics. A
detailed informal semantics is the subject of chapters
through [] For reference purposes, section provides a
formal semantics of Scheme.

Folowine—Algol—Scheme is a statically scoped program-

ming language. Each use of a variable is associated with a
lexically apparent binding of that variable.

Scheme

dynamicall ed langua, Types are associa;ced with
values (also called obJects) rather than with variables.

ref hyt ' REHages
inelude-Adgol-60; Pascal-and—CStatically typed languages,
by contrast, associate types with variables and expressions

All objects created in the course of a Scheme computation,
including procedures and continuations, have unlimited ex-
tent. No Scheme object is ever destroyed. The reason that
implementations of Scheme do not (usually!) run out of
storage is that they are permitted to reclaim the storage
occupied by an object if they can prove that the object
cannot possibly matter to any future computation. Other

Implementations of Scheme are required to be properly
tail-reeursivetail recursive. This allows the execution of
an iterative computation in constant space, even if the it-
erative computation is described by a syntactically recur-
sive procedure. Thus with a properly tail-reeursive—tail
recursive implementation, iteration can be expressed using
the ordinary procedure-call mechanics, so that special it-

eration constructs are useful only as syntactic sugar. See
section [3.5
Scheme procedures are objects in their own right. Pro-

cedures can be created dynamically, stored in data struc-
tures, returned as results of procedures, and so on. Other

Ml

One distinguishing feature of Scheme is that continuations,
which in most other languages only operate behind the
scenes, also have “first-class” status. Continuations are
useful for implementing a wide variety of advanced control
constructs, including non-local exits, backtracking, and
coroutines. See section

Arguments to Scheme procedures are always passed by
value, which means that the actual argument expressions
are evaluated before the procedure gains control, regardless
of whether the procedure needs the result of the evalua-

A~

Scheme’s model of arithmetic is designed to remain as in-
dependent as possible of the particular ways in which num-
bers are represented within a computer. In Scheme, every
integer is a rational number, every rational is a real, and
every real is a complex number. Thus the distinction be-
tween integer and real arithmetic, so important to many
programming languages, does not appear in Scheme. In
its place is a distinction between exact arithmetic, which
corresponds to the mathematlcal ideal, and inexact arith-
metic on approximations. As 5
arithmetic is not limited to integers.

1.2. Syntax

Scheme, like most dialects of Lisp, employs a fully paren-
thesized prefix notation for programs and (other) data; the
grammar of Scheme generates a sublanguage of the lan-
guage used for data. An important consequence of this
simple, uniform representation is the-suseeptibility-of-that
Scheme programs and data te-uniferm-treatment-can easily
be treated uniformly by other Scheme programs. For ex-
ample, the eval procedure evaluates a Scheme program
expressed as data.

The read procedure performs syntactic as well as lexical
decomposition of the data it reads. The read procedure
parses its input as data (section[7.1.2)), not as program.

The formal syntax of Scheme is described in section [7.1}

1.3. Notation and terminology

1.3.1. Primitive;—library;—Base and optional fea-

tures

zﬂ}—fe&mfes—ﬁh%Evei" identifier defined in this report

appears in one of several libraries. Identifiers defined in
the base library are not marked as-being—tmplementations
specially in the body of the report. A summary of all the
standard libraries and the features they provide is given in
Appendix [Al
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Implementations must provide the base library and all
the identifiers exported from it. Implementations are
free to omitoptional features of Scheme or toadd
extenstonsprovide or omit the other libraries given in this
report, but each library must either be provided in its
entirety, exporting no additional identifiers, or else omitted
altogether.

Implementations may provide other libraries not described
in this report. Implementations may also extend the

function of any identifier in this report, provided the exten-
sions are not in conflict with the language reported here.

In particular, implementations must support portable code

by prov1d1ng a sy&ﬁ&eﬁ&rﬁede%h&t—preeﬂ}p%s—ﬂe—}eaﬂea}

convenient—abbreviationsmode of operation in which the
lexical syntax does not conflict with the lexical syntax
described in this report.

1.3.2. Error situations and unspecified behavior

When speaking of an error situation, this report uses the
phrase “an error is signalled” to indicate that implemen-
tations must detect and report the error. An error is

signalled by raising a non-continuable exception, as if b

the procedure raise as described in section G.II The

object raised is implementation-dependent and need not
be a newly allocated object every time. In addition to
errors signalled by situations described in this report,
programmers_may _signal their own errors and handle
signalled errors.

If such wording does not appear in the discussion of an
error, then implementations are not required to detect or
report the error, though they are encouraged to do so. A

»‘NSBVCQV@V@&E@M

ometrrnes but not always referred to with the phrase “an

error.”

For example, it is an error for a procedure to be passed
an argument of a type that the procedure is not explicitly
specified to handle, even though such domain errors are
seldom mentioned in this report. Implementations may
extend a procedure’s domain of definition to include such
arguments.

This report uses the phrase “may report a violation of an
implementation restriction” to indicate circumstances un-
der which an implementation is permitted to report that
it is unable to continue execution of a correct program be-
cause of some restriction imposed by the implementation.

Implementation restrictions are efeeurse-discouraged, but
implementations are encouraged to report violations of im-
plementation restrictions.

For example, an implementation may report a violation of
an implementation restriction if it does not have enough

storage to run a program, or an arithmetic operation
would produce an exact number that is too large for the
implementation to represent.

If the value of an expression is said to be “unspecified,”
then the expression must evaluate to some object without
signalling an error, but the value depends on the imple-
mentation; this report explicitly does not say what value
shetld-be-is returned.

Finally, the words and phrases “must,” “must not,”
Sshall,” “shall not,” “should,” “should not,” “may.”
Zrequired,” “recommended,” and “optional”, although not
capitalized in this report. are to be interpreted as described
in RFC 2119 [12]. In particular, “must” and “must not”

are used only when absolute restrictions are placed on
implementations.

1.3.3. Entry format

Chapters [ and [6] are organized into entries. Each entry de-
scribes one language feature or a group of related features,
where a feature is either a syntactic construct or a built-in
procedure. An entry begins with one or more header lines
of the form

template category
for sy—identifiers in the base
library, or

template library category
where i “library is the short

Was defined in seetionIE3HAppendix [Al

If category is “syntax™;,” the entry describes an expression
type, and the template gives the syntax of the expression
type. Components of expressions are designated by syntac-
tic variables, which are written using angle brackets, for ex-
ample, (expression), (variable). Syntactic variables sheuld
be-understood-are intended to denote segments of program
text; for example, (expression) stands for any string of
characters which is a syntactically valid expression. The
notation

(thing,) ...

indicates zero or more occurrences of a (thing), and
(thing;) (things) ...

indicates one or more occurrences of a (thing).

If category is “preeedure”——auxiliary syntax,” then the
entry describes a syntax binding that occurs only as



art of specific surrounding expressions. Any use as an
independent syntactic construct or identifier is an error.

If category is_“procedure,” then the entry describes a pro-
cedure, and the header line gives a template for a call to the
procedure. Argument names in the template are italicized.
Thus the header line

(vector-ref wector k)

indicates that the built-in—preecedure—procedure bound to

the vector-ref variable takes two arguments, a vector
vector and an exact non-negative integer k (see below).
The header lines

procedure

(make-vector k)
(make-vector k fill)

procedure
procedure

indicate that the make-vector procedure must be defined
to take either one or two arguments.

It is an error for an operation to be presented with an ar-
gument that it is not specified to handle. For succinctness,
we follow the convention that if an argument name is also

the name of a type listed in section[3.2} then that-argwment
must-be-it is an error if that ar ument is not of the named

type. For example, the header line for vector-ref given
above dictates that the first argument to vector-ref must
be-is a vector. The following naming conventions also im-
ply type restrictions:

obj any object

list, listy, ... list;, ... list (see section

Zy By oo Zjy e complex number

Ty, X1y e Ty, e real number

Yo Yls oov Y - - - real number

a4 qis - Qs - rational number

Ny MYy oee My ons integer

ky ki, ..o kj, . exact non-negative integer
string string

pair pair.

list list

alist association list (list of pairs)
symbol symbol

char character

letter alphabetic character

byte exact non-negative integer < 256
bytevector bytevector

proc brocedure

thunk zerg-argument procedure
port port

1.3.4. Evaluation examples

The symbol “=" used in program examples should-be-is
read “evaluates to.” For example,

(*x 5 8) 40

2. Lexical conventions 7

means that the expression (x 5 8) evaluates to the ob-
ject 40. Or, more precisely: the expression given by the
sequence of characters “(* 5 8)” evaluates, in the initial
environment, to an object that may—can be represented
externally by the sequence of characters “40”=.” See sec-
tion [3:3] for a discussion of external representations of ob-
jects.

1.3.5. Naming conventions

By convention, the-7 is the final character of the names of
procedures that always return a boolean valueusuaty—end
2, Such procedures are called predicates.

names of procedures that store values into previously al-
located locations (see section ﬁ%ﬂﬂ—Hy—eﬂé—H}— Such
procedures are called mutation procedures By convention,
the-The value returned by a mutation procedure is unspec-
ified.

By convention, “->” appears within the names of proce-
dures that take an object of one type and return an anal-
ogous object of another type. For example, list->vector
takes a list and returns a vector whose elements are the
same as those of the list.

2. Lexical conventions

This section gives an informal account of some of the lexical
conventions used in writing Scheme programs. For a formal
syntax of Scheme, see section

2.1. Identifiers

An_identifier is any sequence of letters, digits, and
Zextended identifier characters” provided that it does not
(a single period) used in the list syntax is not an identifier.

All implementations of Scheme must support the followin

extended identifier characters:

L$%&*W\+/'V; / : <=>7Q@"~ _~

In addition, any character supported by an implementation
can be used within an identifier when specified usin

an (inline hex escape). _For example, Feethe identifier

H\x65 1lo is the same identifier-as FOOand-=tABas the

identifier Hello, and in an implementation that su ortb

the appropriate Unicode character the identifier \x3BB;
the same number-asXtabas the identifier \.
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2.2. Identifiers

m%mmmm@m
also be written as a Sequence of }e’et;efe—fhg&%

characters enclosed _within_vertical bars (]), analogous
to string literals. Any character, including whitespace
characters, but_excluding the backslash and vertical bar
WMWW&H identifier.

i i s—It is_also possible
@IMIMHWMW

well as any other character, in the identifier with an

(inline hex escape)._Thus the identifier |foo bar| is the

same as the identifier foo\x20;bar, Note that || is a valid
identifier that is not equal to any other identifier.

Here are some examples of identifiers:

lambda q
list->vector seup tsoupt +
<=7 a34kTMNs

ke - k= > 2@
See section for a-the formal syntax of identifiers.

Identifiers have two uses within Scheme programs:

e Any identifier may be used as a variable or as a syn-
tactic keyword (see sections and |4.3)).

e When an identifier appears as a literal or within a

literal (see section [4.1.2)), it is being used to denote a
6.5)

symbol (see section

In contrast with earlier revisions of the report the
syntax distinguishes between upper and lower case in
identifiers and in characters specified via their names
but not in numbers, nor in (inline hex escapes) used in
the syntax of identifiers, characters, or strings. None of
the identifiers defined in this report contain upper-case
characters, even when they may appear to do so as a result
of the English-language convention of capitalizing the word

at the beginning of a sentence.

The following directives give explicit control over case

#!fold-case
#!no-fold-case

These directives may appear anywhere comments are
permitted (see section |2.2)) and are treated as comments

except that they affect the reading of subsequent data.

The #!fold-case directive causes the read procedure to
case-fold (as if by string-foldcase; see section [6.7]) each

identifier and character name subsequently read from the
same port. The #!no-fold-case directive causes the read

rocedure to return to the default, non-folding behavior.

2.2. Whitespace and comments

Whitespace characters are-spaces-and—newlinesinclude the
space and newline characters. (Implementations typieatty

may provide additional whitespace characters such as tab
or page break.) Whitespace is used for improved readabil-
ity and as necessary to separate tokens from each other, a
token being an indivisible lexical unit such as an identifier
or number, but is otherwise insignificant. Whitespace may
can occur between any two tokens, but not within a to-
ken. Whitespace may—also-oeenr-occurring inside a string
—where-it-or inside a symbol delimited by vertical bars is

significant.

The lexical syntax includes several comment forms.
Comments reated exactly like whitespace.

A semicolon (;) indicates the start of a line comment. The
_comment contlnueb to the end of the hne on Wthh the

Are invisible

micoton pppéars

Smin SRS 0 e b i
RSN oDt L L —

comment from appearing in the middle of an identifier or
number.

Another wa to indicate a comment is to prefix a
as well as possible

<whlteSPace> QM(datumm

of the comment prefix #;, the space, and the (datum)
together. This notation is useful for “commenting out”

sections of code.

Block comments are indicated with properly nested #| and
1# pairs.

#| ___The FACT procedure computes the factorial
;55— of a non-negative integer.
1#
(define fact
(lambda (n)
(if (=n 0)
#;(zn 1) 1
(* n (fact (- n 1))))))

;Base case:

2.3. Other notations

For a description of the notations used for numbers, see

section

. + — These are used in numbers, and may also occur any-

where in an 1dent1ﬁerexeept—ae~t%e—ﬁ%st—ehmeﬁef A




delimited plus or minus sign by itself is also an identi-
fier. A delimited period (not occurring within a num-
ber or identifier) is used in the notation for pairs (sec-
tion7 and to indicate a rest—parameter in a formal
parameter hst (sectlon Mehm&eéﬁeqﬁeﬂeeef
WQ&P&QQ@% an identifier.

( ) Parentheses are used for grouping and to notate lists
(section [6.4).
> The single quote character is used to indicate literal data

(section [4.1.2)).

* The backquote character is wused to indicate
almost-eonstant-partly-constant data (section [4.2.8)).

, ,@ The character comma and the sequence comma at-
sign are used in conjunction with backquote (sec-

tion 4.2.8)).

' The double quote character is used to delimit strings
(section [6.7)).

\ Backslash is used in the syntax for character constants
(section - ) and as an escape character within string

constants (section ) and identifiers (section (7.1.1]

[ 1 { } Left and right square brackets and curly braces
and-vertieal-bar-are reserved for possible future exten-
sions to the language.

# Sharp sign is used for a variety of purposes depending
on the character that immediately follows it:

#t #f These are the boolean constants (section [6.3.1f),
along with the alternatives #true and #false.

#\ This introduces a character constant (section .

#( This introduces a vector constant (section. Vector
constants are terminated by ) .

#u8( This introduces a bytevector constant (section [6.9)).

Bytevector constants are terminated by ) .
#e #i #b #o #d #x These are used in the notation for

numbers (section [6.2.5)).
#(n)= #(n)# These arc used for labeling and referencin

other literal data (section .
2.4. Datum labels

#(n)=(datum)
#(n)#

The lexical syntax #(n)={(datum) reads the same as

(datum), but also results in (datum) being labelled by (n).

It is an error if (n) is not a sequence of digits.

lexical syntax
lexical syntax

3. Basic concepts 9

The lexical syntax #(n)# serves as a reference to some
object labelled by #(n)=; the result is the same object as

#(n)= as compared with eqv? (see section .

Together, these syntaxes permit the notation of structures

with shared or circular substructure.

(let ((x (list ’a ’b ’c))) £set#08fh beddr #D#3)

The scope of a datum label is the portion of the datum

in which it appears that is to the right of the label.
Consequently, a reference #{n)# may occur only after a

label #(n)=; it is an error to attempt a forward reference.
In addition, it is an error if the reference appears as
the labelled object itself (as in #(n)= #(n)#), because the
object labelled by #(n)= is not well defined in this case.

It is an error for a (program) or (library) to include circular
references. In particular, it is an error for quasiquote

section 4.2.8) to contain them.

#1=(begin (display #\x) . #1#= error

3. Basic concepts

3.1. Variables, syntactic keywords, and re-
gions

An identifier may-namenames either a type of syntax s-ex
it-may-nameor a location where a value can be stored. An
identifier that names a type of syntax is called a syntactic
keyword and is said to be bound to that syntax. An identi-
fier that names a location is called a variable and is said to
be bound to that location. The set of all visible bindings
in effect at some point in a program is known as the en-
vironment in effect at that point. The value stored in the
location to which a variable is bound is called the variable’s
value. By abuse of terminology, the variable is sometimes
said to name the value or to be bound to the value. This
is not quite accurate, but confusion rarely results from this
practice.

Certain expression types are used to create new kinds of
syntax and to bind syntactic keywords to those new syn-
taxes, while other expression types create new locations
and bind variables to those locations. These expression
types are called binding constructs. Those that bind syn-
tactic keywords are listed in section The most fun-
damental of the variable binding constructs is the lambda
expression, because all other variable binding constructs
can be explained in terms of lambda expressions. The
other variable binding constructs are let, let*, letrec,
letrec*, let-values, let*-values, and do expressions

(see sections [4.1.4] [4.2.2] and [4.2.4)).

Lispexeept—fe%@eﬂﬂﬁew&heme isa sﬁw}e{ﬁh’—seepeé

language with block structure. To each place where an

x)
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identifier is bound in a program there corresponds a region
of the program text within which the binding is visible.
The region is determined by the particular binding con-
struct that establishes the binding; if the binding is estab-
lished by a lambda expression, for example, then its region
is the entire lambda expression. Every mention of an iden-
tifier refers to the binding of the identifier that established
the innermost of the regions containing the use. If there is
no binding of the identifier whose region contains the use,
then the use refers to the binding for the variable in the
top level environment, if any (chapters [4 and @; if there is
no binding for the identifier, it is said to be unbound.

3.2. Disjointness of types

No object satisfies more than one of the following predi-
cates:

boolean? pair?

symbol? number?

char? string?

vector? bytevector? port?
null?

These predicates define the types boolean, pair, symbol,
number, char (or chamcter) stmng, vector @@Wort
mpTOC@dUTG . ‘ 3 : .

sand the empty

Although there is a separate boolean type, any Scheme
value can be used as a boolean value for the purpose of a
conditional test. As explained in section [6.3.1] all values
count as true in such a test except for #f. This report uses
the word “true” to refer to any Scheme value except #f,
and the word “false” to refer to #f.

3.3. External representations

An important concept in Scheme (and Lisp) is that of the
external representation of an object as a sequence of char-
acters. For example, an external representation of the inte-
ger 28 is the sequence of characters “282,” and an external
representation of a list consisting of the integers 8 and 13

2

is the sequence of characters “(8 13)*:.”

The external representation of an object is not neces-
sarily unique. The integer 28 also has representations
“#e28.000” and “#x1c”5,” and the list in the previous
paragraph also has the representations “( 08 13 )” and
“(8 . (13 . 0))” (see section [6.4).

Many objects have standard external representations, but
some, such as procedures, do not have standard represen-
tations (although particular implementations may define
representations for them).

An external representation may—can be written in a pro-
gram to obtain the corresponding object (see quote, sec-

tion .

External representations can also be used for input and
output. The procedure read (section parses ex-
ternal representations, and the procedure write (sec-
tion generates them. Together, they provide an
elegant and powerful input/output facility.

Note that the sequence of characters “(+ 2 6)” is not an
external representation of the integer 8, even though it is an
expression evaluating to the integer 8; rather, it is an exter-
nal representation of a three-element list, the elements of
which are the symbol + and the integers 2 and 6. Scheme’s
syntax has the property that any sequence of characters
that is an expression is also the external representation of
some object. This can lead to confusion, since it maysnot
be-is not always obvious out of context whether a given
sequence of characters is intended to denote data or pro-
gram, but it is also a source of power, since it facilitates
writing programs such as interpreters and compilers that
freat programs as data (or vice versa).

procedure?

The syntax of external representations of various kinds of
objects accompanies the description of the primitives for
manipulating the objects in the appropriate sections of
chapter [6]

3.4. Storage model

Variables and objects such as pairs, vectors, and strings
implicitly denote locations or sequences of locations. A
string, for example, denotes as many locatlons as there
are characters in the strlng 3 ¢ 3 ;

- A new value may-can
be stored mto one of these locatlons using the string-set!
procedure, but the string continues to denote the same
locations as before.

An object fetched from a location, by a variable reference or
by a procedure such as car, vector-ref, or string-ref,
is equivalent in the sense of eqv? (section to the object
last stored in the location before the fetch.

Every location is marked to show whether it is in use. No
variable or object ever refers to a location that is not in use.
Whenever this report speaks of storage being allocated for
a variable or object, what is meant is that an appropriate
number of locations are chosen from the set of locations
that are not in use, and the chosen locations are marked
to indicate that they are now in use before the variable or
object is made to denote them.

Every object that denotes locations is asseeiated—with



or nnmutable

Specifically: literal constants the strlngs returned by
symbol->string, and possibly the environment returned

by scheme-report-environment, are immutable objects,
while all objects created by the other procedures listed in

this report are mutable. It is an error to attempt to store a
new value into a location that is denoted by an immutable
object.

These locations should be understood as_conceptual, not
physical. _Hence, they do not necessarily correspond to
memory addresses, and even if they do, the memory
address may not be constant.

Rationale:  In_many systems it is desirable for constants
(ie._the values of literal expressions) to reside in read-only
distinguish between mutable and immutable objects.

3.5. Proper tail recursion

Implementations of Scheme are required to be properly
tatt-recursivetail recursive. Procedure calls that occur in
certain syntactic contexts defined below are ‘“tail-ealls’tail
calls. A Scheme implementation is properly tail-reeursive
W if it supports an unbounded number of ac-
tive tail calls. A call is active if the called procedure
may—might still return. Note that this includes calls
that may—might be returned from either by the cur-
rent continuation or by continuations captured earlier by
call-with-current-continuation that are later invoked.
In the absence of captured continuations, calls could return
at most once and the active calls would be those that had
not yet returned. A formal definition of proper tail recur-
sion can be found in [11].

Rationale:

Intuitively, no space is needed for an active tail call because
the continuation that is used in the tail call has the same se-
mantics as the continuation passed to the procedure containing
the call. Although an improper implementation might use a
new continuation in the call, a return to this new continuation
would be followed immediately by a return to the continuation
passed to the procedure. A properly tail-reeursivetail recursive
implementation returns to that continuation directly.

Proper tail recursion was one of the central ideas in Steele and
Sussman’s original version of Scheme. Their first Scheme in-
terpreter implemented both functions and actors. Control flow
was expressed using actors, which differed from functions in
that they passed their results on to another actor instead of
returning to a caller. In the terminology of this section, each
actor finished with a tail call to another actor.

Steele and Sussman later observed that in their interpreter the
code for dealing with actors was identical to that for functions
and thus there was no need to include both in the language.
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A tail call is a procedure call that occurs in a tail con-
text. Tail contexts are defined inductively. Note that a tail
context is always determined with respect to a particular
lambda expression.

e The last expression within the body of a lambda ex-
pression, shown as (tail expression) below, occurs in
a tail context. The same is true of the bodies of a

case-lambda expression.

(lambda (formals)

(definition)* (expression)* (tail expression))

e If one of the following expressions is in a tail context,
then the subexpressions shown as (tail expression) are
in a tail context. These were derived from rules in
the grammar given in chapter [7] by replacing some oc-
currences of (expression) with (tail expression). Only
those rules that contain tail contexts are shown here.

(if (expression) (tail expression) (tail expression))
(if (expression) (tail expression))

(cond (cond clause)™)
(cond (cond clause)* (else (tail sequence)))

(case (expression)
(case clause)™)
(case (expression)
(case clause)*
(else (tail sequence)))

(and (expression)*
(or (expression)*

(tail expression))
(tail expression))

(when (test) (tail sequence)) (unless (test) (tail sequence))

(let ((binding spec)*) (tail body))

(let (variable) ((binding spec)*) (tail body))
(let* ((binding spec)*) (tail body))

(letrec ((binding spec)*) (tail body))

(letrec* ((binding spec)*) (tail body)) (let-values ((formals

(let-syntax ((syntax spec)®) (tail body))
(letrec-syntax ({syntax spec)*) (tail body))

(begin (tail sequence))
(do ({iteration spec)*)
((test) (tail sequence))

(expression)*)

where
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(cond clause) — ((test) (tail sequence))
(case clause) — (({datum)*) (tail sequence))

(tail body) — (definition)* (tail sequence)
(tail sequence) — (expression)* (tail expression)

o If a cond or case expression is in a tail con-
text, and has a clause of the form ({expression;) =>
(expressions)) then the (implied) call to the proce-
dure that results from the evaluation of (expressions)
is in a tail context. (expressionsg) itself is not in a tail
context.

e Note that (cond clause)s appear in guard expressions
as well as cond expressions.

Certain built-in procedures are also required to perform
tail calls. The first argument passed to apply and to
call-with-current-continuation, and the second argu-
ment passed to call-with-values, must be called via a
tail call. Similarly, eval must evaluate its first argument
as if it were in tail position within the eval procedure.

In the following example the only tail call is the call to f.
None of the calls to g or h are tail calls. The reference to
x is in a tail context, but it is not a call and thus is not a
tail call.

(lambda ()

(if (g
(let ((x (m)))

x)

(and (g) (£))))

Note: Implementations are allowed, but not required, to recog-
nize that some non-tail calls, such as the call to h above, can be
evaluated as though they were tail calls. In the example above,
the let expression could be compiled as a tail call to h. (The
possibility of h returning an unexpected number of values can
be ignored, because in that case the effect of the let is explicitly
unspecified and implementation-dependent.)

4.  Expressions

Expression types are categorized as primitive or derived.
Primitive expression types include variables and proce-
dure calls. Derived expression types are not semantically
primitive, but can instead be defined as macros. With

J. ” ” O v € L‘ T »‘ ” € ” ” v e
eomplex; Suitable definitions of some of the derived expres-
sions are elassified-astibrary—features e Hitiens
are-given in section [7.3]

The procedures force, eager, and make-parameter are
also described in this chapter, because they are intimately
associated with the delay. lazy, and parameterize

4.1. Primitive expression types

4.1.1. Variable references

(variable) syntax

An expression consisting of a variable (section is a
variable reference. The value of the variable reference is
the value stored in the location to which the variable is
bound. It is an error to reference an unbound variable.

(define x 28)
X - 28

4.1.2. Literal expressions

(quote (datum)) syntax
> (datum) syntax
(constant) syntax

(quote (datum)) evaluates to (datum). (Datum) may be
any external representation of a Scheme object (see sec-
tion . This notation is used to include literal constants
in Scheme code.

(quote a) — a
(quote #(a b c)) — #(a b c)
(quote (+ 1 2)) = (+12)

(quote (datum)) may be abbreviated as ’(datum). The
two notations are equivalent in all respects.

’a — a

"#(a b c) = #(a b <)
0 = O
(+12) = (+12)

> (quote a) —> (quote a)
- = (quote a)

Numerical constants, string constants, character constants,
bytevector constants, and boolean constants evaluate “te
themselves”to themselves; they need not be quoted.

’"abc" —> "abc"
"abc" —> "abc"
7145932 —> 145932
145932 —> 145932
‘#t — #t

#t = #t

As noted in section [3.4] it is an error to alter a constant
(i.e. the value of a literal expression) using a mutation pro-
cedure like set-car! or string-set!.



4.1.3. Procedure calls

({operator) (operand;) ...) syntax

A procedure call is written by simply enclosing in paren-
theses expressions for the procedure to be called and the
arguments to be passed to it. The operator and operand
expressions are evaluated (in an unspecified order) and the
resulting procedure is passed the resulting arguments.

(+ 3 4)
((if #f + %) 3 4)

= 7
= 12

A number of procedures are available as the values of vari-
ables in the initial environment; for example, the addition
and multiplication procedures in the above examples are
the values of the variables + and *. New procedures are cre-
ated by evaluating lambda expressions (see section .

Procedure calls may return any number of values (see

values in sectlon ) Wft—h—t—hﬁ‘—(*%(—eﬁt—lﬁﬂ—ﬁf—\hﬂﬂe’s{—he

rocedures defined in thls report return one value or, for
procedures such as apply, pass on the values returned by

a call to one of their arguments. Exceptions are noted in
the individual descriptions.

Note:
evaluation is unspecified, and the operator expression and the

In contrast to other dialects of Lisp, the order of

operand expressions are always evaluated with the same evalu-
ation rules.

Note:
fied, the effect of any concurrent evaluation of the operator and

Although the order of evaluation is otherwise unspeci-

operand expressions is constrained to be consistent with some
sequential order of evaluation. The order of evaluation may be
chosen differently for each procedure call.

Note: In many dialects of Lisp, the empty eombinationlist,
(), is a legitimate expression evaluating to itself. In Scheme,

asyntacticaly—valid-expression—it is an error.

4.1.4. Procedures

(lambda (formals) (body)) syntax

Syntax: (Formals) should be a formal arguments list as
described below, and (body) should be a sequence of one
Or more expressions.

Semantics: A lambda expression evaluates to a procedure.
The environment in effect when the lambda expression was
evaluated is remembered as part of the procedure. When
the procedure is later called with some actual arguments,
the environment in which the 1ambda expression was evalu-
ated will be extended by binding the variables in the formal
argument list to fresh locations, the corresponding actual
argument values will be stored in those locations, and the
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expressions—in—the-body of the lambda expression will be
evaluated sequentially—in the extended environment. The

result{s)results of the last expression in the body will be

returned as the result{s)-results of the procedure call.

(lambda (x) (+ x x)) —> a procedure
((lambda (x) (+ x x)) 4) = 8
(define reverse-subtract

(lambda (x y) (- y x)))
(reverse-subtract 7 10) = 3
(define add4

(let ((x 4))

(lambda (y) (+ x y))))

(add4 6) — 10

(Formals) should have one of the following forms:

e ((variable;) ...): The procedure takes a fixed num-
ber of arguments; when the procedure is called, the
arguments will be stored in the-bindings-ef-thenewly
allocated locations that are bound to the correspond-
ing variables.

e (variable): The procedure takes any number of argu-
ments; when the procedure is called, the sequence of
actual arguments is converted into a newly allocated
list, and the list is stored in the-binding-ofthe-a newly
allocated location that is bound to (variable).

e ((variable;) ... (variable,) . (variable,11)): If a
space-delimited period precedes the last variable, then
the procedure takes n or more arguments, where n
is the number of formal arguments before the period
(there-must-beit is an error if there is not at least one).
The value stored in the binding of the last variable will
be a newly allocated list of the actual arguments left
over after all the other actual arguments have been
matched up against the other formal arguments.

It is an error for a (variable) to appear more than once in
(formals).

((lambda x x) 3 4 5 6) = (345 86)
((lambda (x y . 2) 2)
345 6) — (5 6)

4.1.5. Conditionals

(if (test) (consequent) (alternate))
(if (test) (consequent))

Syntax: (Test), (consequent),
arbitrary-should be expressions.

syntax
syntax

and (alternate) may—be
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Semantics: An if expression is evaluated as follows: first,
(test) is evaluated. If it yields a true value (see sec-
tion[6.3.1), then (consequent) is evaluated and its vatue(s)
isfare)-values are returned. Otherwise (alternate) is eval-
uated and its velwe{s)is{are)-values are returned. If (test)
yields a false value and no (alternate) is specified, then the
result of the expression is unspecified.

(if (> 3 2) ’yes ’no) = yes
(if (> 2 3) ’yes ’no) = no
(if (> 3 2)

(- 32

(+ 3 2) = 1

4.1.6. Assignments

(set! (variable) (expression)) syntax

(Expression) is evaluated, and the resulting value is stored

in the location to which (variable) is bound. must—be-It

is an error if (variable) is not bound either in some region
enclosing the set! expression or at top level. The result of
the set! expression is unspecified.

(define x 2)

+x1) = 3
(set! x 4) = unspecified
+x1) = 5

4.2. Derived expression types

The constructs in this section are hygienic, as discussed
in section For reference purposes, section gives
macro definitions that will convert most of the constructs
described in this section into the primitive constructs de-
scribed in the previous section.

4.2.1. Conditionals

(cond (clause;) (clauses) ...) syntax
else auxiliary syntax
=> auxiliary syntax
Syntaz: Bachshowldbe-oftheform—(Clauses) take one of

((test) (expressioni) ...)

where (test) is any expression—Alernatively,a-maybe-of
the-form—, or

({test) => (expression))

The last (clause) may be an “else clause,” which has the

form

(else (expressioni) (expressionsz) ...).

Semantics: A cond expression is evaluated by evaluating
the (test) expressions of successive (clause)s in order until
one of them evaluates to a true value (see section .
When a (test) evaluates to a true value, then the remaining
(expression)s in its (clause) are evaluated in order, and
the result{s)results of the last (expression) in the (clause)
istare—~-are returned as the result{s)}results of the entire

cond expression.

If the selected {(clause) contains only the (test) and no
(expression)s, then the value of the (test) is returned as
the result. If the selected (clause) uses the => alternate
form, then the (expression) is evaluated. Hs-value-mustbe
It is an error if its value is not a procedure that accepts
one argument;—this-, This procedure is then called on the
value of the (test) and the walue{s)-values returned by this
procedure isfare—-are returned by the cond expression.

If all (test)s evaluate to false—values#f, and there is no
else clause, then the result of the conditional expression is
unspecified; if there is an else clause, then its (expression)s
are evaluated in order, and the valuefs)-values of the last

one isfare—)-are returned.

(cond ((> 3 2) ’greater)
((< 3 2) ’less)) —> greater

(cond ((> 3 3) ’greater)
((< 3 3) ’less)
(else ’equal)) = equal

(cond ((assv ’b ’((a 1) (b 2))) => cadr)
(else #£f)) == 2

(case (key) (clause;) (clauses) ...) syntax

Syntax: (Key) may be any expression. Each (clause)

should have the form
(((datumy) ...

where each (datum) is an external representation of some

object. Ad-It is an error if any of the (datum)s must

be—distinet—are the same anywhere in the expression.
Alternatively, a (clause) may be of the form

(((datumy) ...

The last (clause) may be an “else clause,”
formone of the forms

(else (expressioni) (expressionsz) ...)

) (expressioni) (expressions) ...),

)_=> (expression))

which has the

or

(else => (expression)) .

Semantics: A case expression is evaluated as follows.
(Key) is evaluated and its result is compared against each
(datum). If the result of evaluating (key) is equivalent
(in the sense of eqv?; see section [6.1)) to a (datum), then
the expresswns in the correspondlng (clause) are evaluated

‘ (5)-in order and the results
of the last expressmn in the (clause) isfare~-are returned
as the result{s)}results of the case expression.




If the result of evaluating (key) is different from every
(datum), then if there is an else clause its expressions are
evaluated and the result{s)results of the last istare)—the
result{s}-are the results of the case expression; otherwise
the result of the case expression is unspecified.

If the selected (clause) or else clause uses the => alternate

form, then the (expression) is evaluated. It is an error if

its value is not a procedure accepting one argument. This
procedure is then called on the value of the (key) and the
values returned by this procedure are returned by the case
expression.
(case (x 2 3)
((2 3 57) ’prime)
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(when (= 1 1.0) (display "1%9> (daspkesfic2")

(unless (test) (expression;) (expressions) ...) syntax

The (test) expression is evaluated, and if it evaluates to #f,
the expressions are evaluated in order. The result of the
unless expression is unspecified.

The following example outputs nothing:

(unless (= 1 1.0) (display “£%) ufdi EVAD)

((1 4 6 89) ’composite)) =—> composite
(case (car ’(c d)) 4.2.2. Binding constructs
(@ ’a)
((b) ’b)) = unspecified The three—binding constructs let, let*, and—letrec,
(case (car *(c d)) letreck, let-values, and let*-values give Scheme a
((a e iow) ’vowel) block structure, like Algol 60. The syntax of the threefirst
(v y) ’semivowel) four constructs is identical, but they differ in the regions
(else Weﬁ%&bhsh for their variable bindings. In a let expres-

(and (testi) ...)

The (test) expressions are evaluated from left to right, and

syntax

vatte-if any expression evaluates to #£ (see section |6.3.1),
#f is returned. Any remaining expressions are not eval-
uated. If all the expressions evaluate to true values, the
value of the last expression is returned. If there are no
expressions then #t is returned.

(and (=2 2) (> 2 1)) = #t
(and (= 2 2) (< 2 1)) = #f
(and 1 2 ’c ’(f g)) = (¢ g
(and) — #t

(or (test1) ...)

The (test) expressions are evaluated from left to right, and
the value of the first expression that evaluates to a true
value (see section is returned. Any remaining ex-
pressions are not evaluated. If all expressions evaluate to

syntax

#f or if there are no expressionsthen—, #f is returned.

(or (=22) (>21)) = #t
(or (=22) (<21)) = #t
(or #f #f #f) = #f
(or (memg ’b ’(a b c))
(/ 30)) = (b <)
(when (test) (expression;) (expressions) ...) syntax

The (test) expression is evaluated, and if it evaluates to
a true value, the expressions are evaluated in order. The

result of the when expression is unspecified.
The following example outputs 12;

sion, the initial values are computed before any of the vari-
ables become bound; in a 1et* expression, the bindings and
evaluations are performed sequentially; while in a~letrec
expressionand letrec* expressions, all the bindings are in
effect while their initial values are being computed, thus
allowing mutually recursive definitions. let-values and

let*-values are analogous to let and let* respectively,
but are designed to handle multiple-valued expressions
binding different identifiers to each returned value.

(let (bindings) (body)) syntax

Syntaz: (Bindings) should have the form
(({variable;) (init1)) ...),

where each (init) is an expression, and (body) should be a
sequence of zero or more definitions followed by a sequence
of one or more expressions as described in section [T 4l It
is an error for a (variable) to appear more than once in the
list of variables being bound.

Semantics: The (init)s are evaluated in the current envi-
ronment (in some unspecified order), the (variable)s are
bound to fresh locations holding the results, the (body)
is evaluated in the extended environment, and the vakie{s)
values of the last expression of (body) isfare-are returned.
Each binding of a (variable) has (body) as its region.

(let ((x 2) (y 3

(* x y)) = 6
(let ((x 2) (y 3))
(let ((x 7)
(z (+xy)))
(*x z x))) — 35
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See also “named let,” section [£.2.4]

(let* (bindings) (body))
Syntaz: (Bindings) should have the form

syntax

(((variableq) (init1)) ...),

and (body) should be a seetaeree-efzero or more definitions
followed by _ome or more expressions as_described in

section B.LA

Semantics: The Let+let* binding construct is similar to
let, but the bindings are performed sequentially from
left to right, and the region of a binding indicated by
((variable) (init)) is that part of the let* expression to
the right of the binding. Thus the second binding is done
in an environment in which the first binding is visible, and
so on. The (variable)s need not be distinct.

(let ((x 2) (y 3))
(Qetx ((x 7)
(z (+ x9)))
(x z x))) = 70

(letrec (bindings) (body)) syntax
Syntax: (Bindings) should have the form

(((variableq) (init1)) ...),

and (body) should be a sequence of zero or more definitions
followed by one or more expressions as_described _in

section [Tl Tt is an error for a (variable) to appear more
than once in the list of variables being bound.

Semantics: The (variable)s are bound to fresh locations
holding undefined-unspecified values, the (init)s are eval-
uated in the resulting environment (in some unspecified
order), each (variable) is assigned to the result of the cor-
responding (init), the (body) is evaluated in the resulting
environment, and the valaefs)}-values of the last expression
in (body) isfarej-are returned. Each binding of a (variable)
has the entire letrec expression as its region, making it
possible to define mutually recursive procedures.

(letrec ((even?
(lambda (n)
(if (zero? n)
#t
(odd? (- n 1)))))
(0dd?
(lambda (n)
(if (zero? n)
#£f
(even? (- n 1))))))
(even? 88))
= #t

One restriction on letrec is very important: it-must-be-if
it is not possible to evaluate each (init) without assigning
or referring to the value of any (variable)—H-thisrestrietion
is-violateds+then-, it is an error. The restriction is necessary
because Sehem&passes—af&&me&t%byﬁ%}ueﬁwher—%h&fkby

nameletrec is defined in terms of a procedure call where a
lambda expression binds the (variable)s to the values of the

(init)s. In the most common uses of letrec, all the (init)s
are lambda expressions and the restriction is satisfied au-
tomatically. Another restriction is that the continuation of
each (init) should not be invoked more than once.

(letrec* (bindings) (body)) syntax

Syntaz: (Bindings) should have the form
(((variabler) (init1)) ...),

and (body) should be a sequence of zero or more definitions
followed by one or more expressions as described in
section B.TA It is an error for a (variable) to appear more

than once in the list of variables being bound.
Semantics: The (variable)s are bound to fresh locations,

each (variable) is assigned in left-to-right order to the
result of evaluating the corresponding (init), the (body)
is_evaluated in the resulting environment, and the values
of the last expression in (body) are returned. Despite the
left-to-right evaluation and assignment order, each binding
of a (variable) has the entire letrec* expression as its
region, making it possible to define mutually recursive
procedures.

If it is not possible to evaluate each (init) without assigning
or referring to the value of the corresponding (variable)
or the (variable) of any of the bindings that follow it in

(bindings), it is an error.

(letrec*x (( (lambde=-(5) (+1 (q (- x 1

(let-values (mvbindings) (body))
Syntaz: (Mvbindings) should have the form
(({formalsy) (init1)) ...),

where each (init) should be an expression, and (body)
should be zero or more definitions followed by a sequence
of one or more expressions as described in section [, 1.4l It

is an error for a variable to appear more than once in the
sct of (formals).

syntax

Semantics:  The (init)s are evaluated in_ the current
environment (in some unspecified order) as if by invokin

call-with-values, the variables occuring in the (formals)

are bound to fresh locations holding the values returned
by the (init)s, where the (formals) are matched to the

ARUAAARAAA AN A
return values in the same way that the (formals) in a
lambda expression are matched to the arguments in a
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rocedure call. Then, the (body) is evaluated in the 4.2.4. Iteration
extended environment, and the values of the last expression

of (body) are returned. Each binding of a (variable) has ~ (do (({variable;) (init1) (step1)) syntax
(body) as its region. )

(.<t-:e.zst) (expression) ...)

It is an error if the (formals) do not match the number of
NSRS NARCASEIASRNEELEEEEE S St (command) ...)

values returned by the corresponding (init).
(é}%@ Wis an iteration construct. It specifies a

(let-values (((root rem) (exach-Bhiteger-sqrt 32))) o R
set of variables to be botund, how they are to be initialized

at the start, and how they are to be updated on each iter-
ation. When a termination condition is met, the loop exits

(let*-values (mvbindings) (body)) syntax . )
after evaluating the (expression)s.

Syntaz: (Mvbindings) should have the form_

(((formals) (init)) ...) A Pedo expressions—are-expression is evaluated as follows:
dw1; dv) shoul dbm - ; definiti The (init) expressions are evaluated (in some unspecified
and (body) should be a sequence of zero or more definitions order), the (variable)s are bound to fresh locations, the

followed by_one or more expressions as described in results of the (init) expressions are stored in the bindings
section[@ T4l In each (formals), it is an error if any variable

appears more than once.
Semantics: let-values* is similar to let-values, bu Each iteration begins by evaluating (test); if the result is

P - S-S0 P-S- PN PO . .
the (init)s are evaluated and bindings created sequentiall false (see section 6.3.1), then the (command) expressions
PO are evaluated in order for effect, the (step) expressions

from left to right, with the region of the bindings of each . 4 fied ord L bl
{formals) including the {init)s to its right as well as (body). are evaluated in some unspecified order, the (variable)s
~ are bound to fresh locations, the results of the (step)s are

Thus the second (init) is evaluated in an environment in
Thus the second (init) is evaluated in an environment. in stored in the bindings of the (variable)s, and the next iter-

which the first set of bindings is visible and initialized, and ; .
ation begins.

of the (variable)s, and then the iteration phase begins.

S0 on.
(Let ((a ’a) (b ’b) (x x) (y=tyXx y(keyd-values (((albitepfifiyaluptesyo a true value, thepthe (expression)s95s st a
evaluated trom left to right an e vartre{sj-values of the
4.2.3. Sequencing last (expression) is{are—-are returned. If no (expression)s
Both of Scheme’s sequencing constructs are named begin,  are present, then the value of the do expression is unspec-
but the two have slightly different forms and uses: ified.
The region of the binding of a (variable) consists of the
(begin (expression or definition) ...) syntax  entire do expression except for the (init)s. It is an error

This form of begin may appear as part of a (body), or for a (variable) to appear more than once in the list of do
at_the (top-level), or directly nested in a begin that is  variables.
itself'o'f this form. It causes the conta.ined ex resgions ar?d A (step) may be omitted, in which case the effect is the
definitions to be evaluated exactly as if the enclosing begin = ¢ame as if ((variable) (init) (variable)) had been written
construct were not present. instead of ((variable) (init)).
Rationale: This form is commonly used in the output of macros (do (( (make-vector 5))
see section |4.3)) which need to generate multiple definitions and ° (\ire(c) (r:aie 1‘)“)3‘): or
splice them into the context in which they are expanded. ((= i 5) vec)

(vector-set! vec i i)) = #(0 1 2 3 4)

(begin (expression;) (expressions) ...) syntax
This form of begin can be used as an ordinary expression. (let ((x °(1 357 9)))
The (expression)s are evaluated sequentially from left to (do ((x x (cdr x))
right, and the vakaefs)}-values of the last (expression) isfaze (sum 2 (+ sum (car x))))
Jare returned. This expression type is used to sequence ((null? z) sum))) = %
side effects such as assignments or input and output.
(define x 0) (let (variable) (bindings) (body)) syntax
( and (= x 0) ( begin (set! x 5) “Named let” is a variant on the syntax of let which pro-
TR D — 6 vides a more general looping construct than do and may
can also be used to express recursions. It has the same syn-
(begin (display "4 plus 1 equals ") tax and semantics as ordinary let except that (variable)
(display (+ 4 1))) = unspecified is bound within (body) to a procedure whose formal argu-

and prints 4 plus 1 equals 5 ments are the bound variables and whose body is (body).
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Thus the execution of (body) meas—can be repeated by in-
voking the procedure named by (variable).

(let loop ((numbers ’(3 -2 1 6 -5))
(nonneg ’())
(neg *0O))
(cond ((null? numbers) (list nonneg neg))
((>= (car numbers) 0)
(loop (cdr numbers)
(cons (car numbers) nonneg)
neg))
((< (car numbers) 0)
(loop (cdr numbers)
nonneg
(cons (car numbers) neg)))))

= ((613) (-5 -2))

4.2.5. Delayed evaluation

(delay (expression)) lazy library syntax

The delay construct is used together with the proce-
dure force to implement lazy evaluation or call by need.
(delay (expression)) returns an object called a promise
which at some point in the future may be asked (by the
force procedure) to evaluate (expression), and deliver the
resulting value. The effect of (expression) returning mul-
tiple values is unspecified.

(lazy (expression)) lazy library syntax

The lazy comstruct is similar to delay, but it is an error
for its argument not to evaluate to a promise. The returned
promise, when forced, will evaluate to whatever the original
promise would have evaluated to if it had been forced.

(force promise)

The force {seetionfk2Hpfor-procedure forces the value of
a tﬁef&eemp}e%&éesenpﬁefrpmmzse created by delay or
lazy. If no value has been computed for the promise, then
a value is computed and returned. The value of the promise
is cached (or "memoized”) so that if it is forced a second

time, the previously computed value is returned.

lazy library procedure

(force (delay (+ 1 2))) =3
(let ((p (delay (+ 1 2))))
(list (force p) (force p)))
= (3 3)

(define integers (letrec ((next

(lambda (TPhe

to a constructor is wrapped in delay, and each argument
passed to a deconstructor is wrapped in force. The use
of (Qazy ...) instead of (delay (force ...)) around
the body of the procedure ensures that an ever-growing
sequence of pending promises does not exhaust the heap.

(define (stream-filter p? s) (laz (if (null? (force s))

(head (tail (tail (stream-fitterb5odd? integers))))

The following examples are not intended to illustrate good
programming style, as delay, lazy, and force are mainly
intended_for programs written in the functional style.
However, they do_illustrate the property that only one

value is computed for a promise, no matter how many times
it is forced.

(define count 0) (define (de2ay a( ims€set! count (+ count

(force p) . = 6
P = g _promise, still
(begin (set! x 10) (forze P))

Various extensions to this semantics of delay, force and

lazy are supported in some implementations:

e Calling force on an object that is not a promise ma;
simply return the object.

o It may be the case that there is no means by which
a promise can be operationally distinguished from its
forced value. That is, expressions like the following
may_evaluate to either #t or to #f, depending on the

(eqv? (delay 1) 1) = unspecified
(pair? (delay (coms 1 2))) = wunspecified

e Some implementations may implement “implicit
forcing,” where the value of a promise is forced b
rimitive procedures like cdr and +:

G (elay (x37)13) = 3

(eager obj) lazy library procedure

MJ@&L%& Obj It is blmﬂar to delay but does not dela

(head (tail (tail integers))i=> 2 ent: it is a procedure rather than syntax.

ed (next 0))) (



4.2.6. Dynamic bindings

(make-parameter init)
(make-parameter init converter)

Returns a newly allocated parameter object, which is a
procedure that accepts zero arguments and returns the
value_associated with the parameter object. Initially,
this_value is_the value of (converter init), or of init
if_the conversion procedure converter is_not_specified.
The_associated value can be temporarily changed using
parameterize, which is described below.

The effect of passing arguments to a parameter object is
implementation-dependent.

procedure
procedure

(parameterize (((param;) (valuei)) ...)

(body))

A__parameterize expression is used to change the
values_returned by specified parameter objects during
the evaluation of the body. It is an error if the value
of any (param) expression is not a parameter object.
The_(param) and (value) expressions are_ evaluated in
an_unspecified order. _The (body) is evaluated in_a
dynamic_environment _in which calls to_the parameters
return the results of passing the corresponding values to the
conversion procedure specified when the parameters were
created. Then the previous values of the parameters are
restored without passing them to the conversion procedure.
The results of the last expression in the (body) are returned

Note: If the conversion procedure is not idempotent, the results
of (parameterize ((x (x))) ...), which appears to bind the
parameter = to its current value, may not be what the user
expects.

If an implementation supports multiple threads of
execution, then parameterize must not change the

associated values of any parameters in any thread other
than the current thread or threads created inside (body)

Parameter objects can be used to specify configurable
settings for a computation without the need to pass the
value to every procedure in the call chain explicitly.

10  (lambda (x)

syntax

(define radix (make-parameter

(define (f n) (number->string n (radix)))

(f 12) = "12"
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4.2.7. Exception Handlin
(guard ((variable) syntax
(cond clause;) (cond clauses) ...)
(body))

Syntaz: Bach (cond clause) is_as in the specification of
cond.

Semantics: The_(body) is evaluated with an_exception
handler that binds the raised object to_(variable) and,
within_the_scope _of that binding, evaluates the clauses
as if they were the clauses of a cond expression. That
implicit cond expression is evaluated with the continuation

and dynamic environment of the guard expression. If
every {cond clause)’s (test) cvaluates to #f and there is

no else clause, then raise-continuable is re-invoked on

the raised object within the dynamic environment of the
original call to raise except that the current exception
handler is that of the guard expression.

See section [6.11] for a more complete discussion of
exceptions.

4.2.8. Quasiquotation

(quasiquote (qq template))
“{qq template)

unquote

unquote-splicing

syntax
syntax
auxiliary syntax
auxiliary syntax

“Backquote” or “quasiquote” expressions are useful for
constructing a list or vector structure when mest—some
but not all of the desired structure is known in advance.
If no commas appear within the (qq template), the result
of evaluating " (qq template) is equivalent to the result of
evaluating ’(qq template). If a comma appears within
the (qq template), however, the expression following the
comma is evaluated (“unquoted”) and its result is inserted
into the structure instead of the comma and the expression.
If a comma appears followed immediately by an at-sign (@),
then it is an error if the following expression must-does not
evaluate to a list; the opening and closing parentheses of

the list are then “stripped away” and the elements of the
.(if (and (integer? x) (<= 2 X 16)) .

) e~ olade-of-+h oS N APt AR B
a a Pra O O A AT=51L

sequence. A comma at-sign should only appear within a
list or vector (qq template).

- > “(list ,(+ 1 2) 4) = (list 3 4)

(parameterize ((radix 2)) (let ((name ’a)) ~(list ,name ’,name))

(£ 12)) = "1100" = (list a (quote a))
(f 12) = "12" “(a ,(+ 1 2) ,e(map abs ’(4 -5 6)) b)
. . — (a3456Dhb)

(radix 16) = unspecified “(( foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(comns)))
. . — ((foo 7) . coms)

{parameterize ((radix 0)) (E22MITor . C#(10-5-(sqrt 4) ,@(map sqrt ’(16 9)) 8)

— #(10 52 4 3 8)

error

"inv:
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Quasiquote forms—expressions may be nested. Substitu-
tions are made only for unquoted components appearing
at the same nesting level as the outermost backquote.
The nesting level increases by one inside each successive
quasiquotation, and decreases by one inside each unquota-
tion.

“(a (M ,(+12) ,(foo ,(+ 1 3) d) e) £)
= (a (b ,H+12) ,(foo 4 d) e) £)
(let ((namel ’x)
(name2 ’y))

“(a (b ,,namel ,’,name2 d) e))
= (a (b ,x ,’y d) e)

A _guasiquote expression may return either fresh, mutable
objects or_literal structure for any structure that is
constructed at _run_time during the evaluation of the
expression.  Portions that do not need to be rebuilt are

(let ((a 3)) (1 2) ,a ,4 ,’five 6))

may be equivalent to either of the following expressions:

(let ((a 3)) (coms ’(1 2)

However, it is not equivalent to this expression:
(et ((a 3)) (list (list 1 2) a4 'five 6))

The two notations ~{(qq template) and (quasiquote
(qq template)) are identical in all respects. ,{expression)
is identical to (unquote (expression)), and ,@(expression)
is identical to (unquote-splicing (expression)). The ex-
ternal syntax generated by write for two-element lists
whose car is one of these symbols may vary between im-
plementations.

(quasiquote (list (unquote (+ 1 2)) 4))

= (list 3 4)
>’ (quasiquote (list (unquote (+ 1 2)) 4))
= " (list ,(+ 1 2) 4)

e., (quasiquote (list (unquote (+ 1 2)) 4))

—It_is an error if any

of the %%Hﬁwﬁs&w%%

or unquote-splicing appear in positions within a
(qq template) otherwise than as described above.

4.2.9. Case-lambda

(case-lambda (clause;) (clauses) ...)
case-lambda library syntax

Syntaz: Each (clause) should be of the form ((formals)

(body)), where (formals) and (body) have the same syntax
as in a lambda expression.

Semantics: A _case-lambda expression evaluates to a
rocedure that accepts a variable number of arguments

and is lexically scoped in the same manner as a procedure
resulting from a lambda expression. When the procedure
is called, the first (clause) for which the arguments agree

with (formals) is selected, where agreement is specified as
for the (formals) of a lambda expression.

. The variables
of (formals) are bound to_fresh locations, the values of
the arguments are stored in those locations, the (body)

is evaluated in the extended environment, and the results
of (body) are returned as the results of the procedure call.

It is an error for the arguments not to agree with the
(formals) of any (clause).

(define range (case-lambda ((e) (range 0 e)) ((b e) (do

(range 3) = (0.1 2)
(range 3 5) = (3 4)

4.3. Macros

Scheme programs can define and use new derived expres-
sion types, called macros. Program-defined expression

(cons a (cons 4 (co%pe%i}\l/%ve @g)e)§¥51§ax

({keyword) (datum) ...)

where (keyword) is an identifier that uniquely determines
the expression type. This identifier is called the syntactic
keyword, or simply keyword, of the macro. The number of
the (datum)s, and their syntax, depends on the expression
type.

Each instance of a macro is called a use of the macro. The
set of rules that specifies how a use of a macro is transcribed
into a more primitive expression is called the transformer
of the macro.

The macro definition facility consists of two parts:

e A set of expressions used to establish that certain iden-
tifiers are macro keywords, associate them with macro
transformers, and control the scope within which a
macro is defined, and

e a pattern language for specifying macro transformers.
The syntactic keyword of a macro may shadow variable

bindings, and local variable blndlngs may shadow keyword
blndll’lgS' ' 3

e If a macro transformer inserts a binding for an identi-
fier (variable or keyword), the identifier will in effect be
renamed throughout its scope to avoid conflicts with
other identifiers. Note that a define at top level may
or may not introduce a binding; see section



e If a macro transformer inserts a free reference to an
identifier, the reference refers to the binding that was
visible where the transformer was specified, regardless
of any local bindings that may-surround the use of the
macro.

In consequence, all macros defined using the pattern
language are “hygienic” and “referentially transparent”

and thus preserve Scheme’s lexical scoping [19] 20 4} [10]
14]

4.3.1. Binding constructs for syntactic keywords

The Let-syntaxlet-syntax and letrec-syntax binding

constructs are analogous to let and letrec, but they bind
syntactic keywords to macro transformers instead of bind-
ing variables to locations that contain values. Syntactic
keywords may also be bound at top level or elsewhere with

define-syntax; see section @

(let-syntax (bindings) (body)) syntax

Syntax: (Bindings) should have the form
(((keyword) (transformer spec)) ...)

Each (keyword) is an identifier, each (transformer spec)
is an instance of syntax-rules, and (body) should be a
sequence of one or more definitions followed by expressions.
It is an error for a (keyword) to appear more than once in
the list of keywords being bound.

Semantics: The (body) is expanded in the syntactic envi-
ronment obtained by extending the syntactic environment
of the let-syntax expression with macros whose keywords
are the (keyword)s, bound to the specified transformers.
Each binding of a (keyword) has (body) as its region.

(let-syntax ((when (syntax-rules ()
((when test stmtl stmt2 ...)
(if test
(begin stmtl
stmt2 ...))))))
(let ((if #t))
(when if (set! if ’now))
if)) —> now

(let ((x ’outer))
(let-syntax ((m (syntax-rules () ((m) x))))
(let ((x ’inner))
(m)))) —> outer

(letrec-syntax (bindings) (body)) syntax
Syntax: Same as for let-syntax.

Semantics: The (body) is expanded in the syntactic
environment obtained by extending the syntactic envi-
ronment of the letrec-syntax expression with macros
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whose keywords are the (keyword)s, bound to the speci-
fied transformers. Each binding of a (keyword) has the
(transformer spec)s as well as the (body) within its region,
so the transformers can transcribe expressions into uses of
the macros introduced by the letrec-syntax expression.

(letrec-syntax
((my-or (syntax-rules ()
((my-or) #f)
((my-or e) e)
((my-or el e2 ...)
(let ((temp el))
(if temp
temp
(my-or €2 ...)))))))
(let ((x #£)
(y 7)
(temp 8)
(let odd?)
(if even?))
(my-or x
(let temp)
(if y)
y))) = 7

4.3.2. Pattern language

A (transformer spec) has the—folewing—formone of the
following forms:

(syntax-rules ((literal) ...) syntax
(syntax rule) ...)

(syntax-rules (ellipsis) ((literal) ...) syntax
(syntax rule) ...)

- auxiliary syntax

.. auxiliary syntax

Syntaz: is-atis J 1t is an error if any

of the (literal)s, or the (ellipsis) in the second form, is not
an identifier. It is also an error if (syntax rule) should-be

is not of the form
({pattern) (template))
The (pattern) in a (syntax rule) is a list (pattern) that

Is an identifier.
A (pattern) is either an identifier, a constant, or one of the
following

((pattern) ...)

({pattern) (pattern) ... . (pattern))

({pattern) ... (pattern) (ellipsis) (pattern) ..
#((pattern) ...)
#((pattern) ... (pattern) (ellipsis) (pattern) ... )

and a template is either an identifier, a constant, or one of
the following

({element) ...)
({element) (element) ... . (template))
((ellipsis) (template)) #((element) ...)

_...)((pattern) ...

(pa
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where an (element) is a (template) optionally followed by
an (ellipsis)and-an-. An (ellipsis) is the identifier “specified

in the second form of syntax-rules, or the default
identifier ... 2

e&&ter—&%em-p%&%e»er—&ja&%efﬁ% three consecutlve eriods

otherwise.

Semantics: An instance of syntax-rules produces a new
macro transformer by specifying a sequence of hygienic
rewrite rules. A use of a macro whose keyword is associated
with a transformer specified by syntax-rules is matched
against the patterns contained in the (syntax rule)s, be-
ginning with the leftmost (syntax rule). When a match is
found, the macro use is transcribed hygienically according
to the template.

An identifier that-appearsin-thepattern-of-ais-a-appearing
within a (pattern) may be an underscore (

SUBSCRIPTNB), a literal identifier listed in the list of

(literal)s, or the (ellipsis). All other identifiers appearin
within a (pattern) are pattern warieblevariables—anlessitis

The keyword at the beginning of the pattern in a

(syntax rule) is not involved in the matching and is
considered neither a pattern variable nor a literal identifier.

Pattern variables match arbitrary input elements and are
used to refer to elements of the input in the template. It
is an error for the same pattern variable to appear more
than once in a (pattern).

The keyword he besinni e the s .
volvedinthe matehineand_is dered—oni
variable—or—literal—identifier——Underscores also _match

arbitrary input elements but are not pattern variables
and so cannot be used to refer to those elements. If an

recedence and underscores in the (pattern) match as
literals. Multiple underscores may appear in a (pattern).

Identifiers that appear in ((literal) ...) are interpreted
as literal identifiers to be matched against corresponding
stubforms-elements of the input. A subferm-element in the
input matches a literal identifier if and only if it is an iden-
tifier and either both its occurrence in the macro expression
and its occurrence in the macro definition have the same
lexical binding, or the two identifiers are equal and both
have no lexical binding.

A subpattern followed by —(elhpsm) can match zero or
more elements of the input- ror-—for

Lo logt ol ‘. - sequenco—of_subpatterns,
unless (ellipsis) appears in the (literal)s in which case it is
matched as a literal.

More formally, an input fers-F matches a pattern P if and
only if:

e P is an underscore (
SUBSCRIPTNB).

e P is a non-literal identifier; or

e P is a literal identifier and F' is an identifier with the
same binding; or

e Pisalist (P, ... P,) and I is a list of n forms
elements that match P; through P,, respectively; or

e Pisan improper list (P, Py ... P, . P,41) and F
is a list or improper list of n or more ferms-elements
that match P; through P,, respectively, and whose
nth “edr”™tail matches P, 1; or

o Pisof the form (P ... BrFssrP._1_P. (ellipsis)
Ppsi .. Pp) where tb—%he—}deﬂahei—aﬁd»F is a
proper list of atteast-n formselements, the first #-e — 1
of which match P; through P*B@;,L» respectlvely, and

each-remaining element-of- whose next m — k elements
each match P., whose remaining n —m elements
match P, through P,; or

o P is of the form (P ... Peoy P (ellipsis) Poa
Lo . Py) where F matehes—Preris an list or
match Py through P 1. whose next m — k elements
each match L. whose remaining n —m elements
match Py through P, and whose nth and final cdr

matches Py; or

e P is a vector of the form #(P, ... P,) and F is a
vector of n ferms-elements that match P, through P,;
or

e P is of the form #(Pl . %P —_
(ellipsis) P41 ... P,) where h—bhe&éeﬂhﬁeiL—&ﬁérF
is a vector of n er-mereforms-thefirst-n-clements the
first e — 1 of which match P; through P—fespee‘ﬁwe}y
aﬂd—e&eh%ef&atﬂm%e}emeﬁt—ef—F—m&%eheﬁiD—,qP Pe_1,

whose next m — k elements each match P,, and whose

remaining n — m elements matche P, through P,;

or

o P is a datum-constant and F' is equal to P in the sense
of the equal? procedure.

It is an error to use a macro keyword, within the scope of
its binding, in an expression that does not match any of
the patterns.



When a macro use is transcribed according to the template
of the matching (syntax rule), pattern variables that oc-
cur in the template are replaced by the subferms-elements
they match in the input. Pattern variables that occur in
subpatterns followed by one or more instances of the iden-
tifier —(ellipsis) are allowed only in subtemplates that are
followed by as many instances of ———(ellipsis). They are
replaced in the output by all of the subferms-elements they
match in the input, distributed as indicated. It is an error
if the output cannot be built up as specified.

Identifiers that appear in the template but are not pattern
variables or the identifier —(ellipsis) are inserted into the
output as literal identifiers. If a literal identifier is inserted
as a free identifier then it refers to the binding of that iden-
tifier within whose scope the instance of syntax-rules ap-
pears. If a literal identifier is inserted as a bound identifier
then it is in effect renamed to prevent inadvertent captures
of free identifiers.

A template of the form ((ellipsis) (template)) is identical
to (template), except that_ellipses within the template
have no special meaning, That is, any ellipses contained
within_(template) are treated as ordinary identifiers. In
particular, the template ((ellipsis) (ellipsis)) produces a
single (ellipsis). __This_allows syntactic abstractions to
expand into code containing ellipses.

(define-syntax be-like-begin (syntax-rules () ((be-like-begin name) (define-syntax name (syntax-rules ()

(be-like-begin sequence) (sequencd 1 2 3 4)

As an example, if 1et and cond are defined as in section
then they are hygienic (as required) and the following is not
an error.

(let ((=> #£))

(cond (#t => ’0k))) —> ok

The macro transformer for cond recognizes => as a local
variable, and hence an expression, and not as the top-level
identifier =>, which the macro transformer treats as a syn-
tactic keyword. Thus the example expands into

(let ((=> #f))
(if #t (begin => ’0k)))

instead of
(let ((=> #£))
(let ((temp #t))
(if temp (’ok temp))))

which would result in an invalid procedure call.

4.3.3. Signalling errors in macro transformers

(syntax-error (message) (args) ...) syntax
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syntax-error hehaves similarly to error
evaluation should signal an error as soon as syntax-error
is_expanded. This can be used as_a syntax-rules
(template) for a_(pattern) that is an invalid use of the
macro, which can provide more descriptive error messages.
(message) should be a string literal, and (args) arbitrary
expressions providing additional information. Applications
cannot_count on being able to _catch syntax errors with
exception handlers or guards.

(define-syntax simple-let (syntax-rules () ((

SUBSCRIPTNB (head ... ((x . y) val) . tail) bodyl body:
SUBSCRIPTNB ((name val) ...) bodyl body2 ...) ((lambda (n:
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5. Program structure

5.1. Programs

A Scheme program consists of a sequence of program parts:
expressions, definitions, and-syntax—definitions—syntax

definitions, record type definitions, imports, cond-expands,
and includes. A collection of program parts may be
encapsulated in_a library to be reused by multiple
programs.  Expressions are described in chapter E
definitions-and-syntex-definitions_the other program parts,
as well as libraries, are the subject of the rest of the present
chapter.

Programs and libraries are typically stored in fileser
Mmemered interactively to a
running Scheme sybtem a%%hemgkhand other paradlgms
are pOSSlbl : 5 S : S

. Implementations which store libraries in files should
document the mapping from the name of a library to its
location in the file system.

-Program parts

other than expressions that are rebent at the top level of a
program can be interpreted declaratively. They cause bind-

ings to be created in the top level environment or modify
the value of existing top-level bindings. The initial (or “to

level”) Scheme environment is empty except for import, so

further bindings can only be introduced with import.

Expressions occurring at the top level of a program are
interpreted imperatively; they are executed in order when
the program is invoked or loaded, and typically perform
some kind of initialization.

At the top level of a program (begin (form;) ...) is
equivalent to the sequence of expressions, definitions, and
syntax definitions thaetform-the-body-of-the—in the begin.
Macros can expand into such begins.

Implementations may provide an interactive session called
a REPL (Read-Eval-Print Loop), where Scheme program
parts_can be _entered and evaluated one at a time. For
convenience_and case of use. the “top:level” Scheme
environment in a REPL must not be not empty, but must
start out with a number of variables bound to locations
containing at least the bindings provided by the base
library. This library includes the core syntax of Scheme
and generally useful procedures that manipulate data. For
example, the variable abs is bound to a procedure of one
argument that_computes the absolute value of a number,
and the variable + is bound to a procedure that computes
sums. _The full list of (scheme base) bindings can be

sums.
found in Appendix [Al

5.2. Definitions

Definitions are valid in some, but not all, contexts where
expressions are allowed. They are valid only at the top
level of a (program) and at the beginning of a (body).

A—&eﬁfﬁﬁeﬂﬁheﬂ}é—hav&m (body) (begin (definition;)

...) is__equivalent to the sequence of definitions
(deﬁmtlonl} ...._Macros can expand into such begins.

A definition takes one of the following forms:

e (define (variable) (expression))

e (define ((variable) (formals)) (body))

(Formals) should be either a sequence of zero or more
variables, or a sequence of one or more variables fol-
lowed by a space-delimited period and another vari-
able (as in a lambda expression). This form is equiv-
alent to

(define (variable)

(lambda ({formals)) (body))).

(formal)) (body))

(Formal) should be a single variable.
equivalent to

e (define ((variable)

This form is

(define (variable)
(lambda (formal) (body))).

5.2.1. Top level definitions

At the top level of a program, a definition

(define (variable) (expression))
has essentially the same effect as the assignment expres-
sion

(set! (variable) (expression))

if (variable) is bound —H-to a non-syntax value, However,
if (variable) is not bound, heweveror is bound to a

syntaz definition (see below), then the definition will bind
(variable) to a new location before performing the assign-
ment, whereas it would be an error to perform a set! on
an unbound variable.

(define add3
(lambda (x) (+ x 3)))

(add3 3) — 6
(define first car)
(first (1 2)) = 1

Seme-implementations-of-Sehemeuse-lmplementations are
ermitted to provide an initial environment in which all

possible variables are bound to locations, most of which
contain undefined-unspecified values. Top level definitions
in such an implementation are truly equivalent to assign-
ments.



5.2.2. Internal definitions

Definitions may occur at the beginning of a (body)
(that is, the body of a lambda, let, let*, letrec,
letrecx*, let-values, let-values*, let-syntax, or
letrec-syntax, parameterize, guard, or case-lambda
expression or that of a definition of an appropriate form).
Such definitions are known as internal definitions as op-
posed to the top level definitions described above. The
variable defined by an internal definition is local to the
(body). That is, (variable) is bound rather than assigned,
and the region of the binding is the entire (body). For
example,

(let ((x 5))
(define foo (lambda (y) (bar x y)))
(define bar (lambda (a b) (+ (*x a b) a)))
(foo (+ x 3))) — 45

A—An_expanded (body) containing internal definitions
can always be converted into a completely equivalent
Tetrecletrec* expression. For example, the let expres-
sion in the above example is equivalent to

(let ((x 5))
( Tetree— letrecx ((foo (lambda (y) (bar x y)))
(bar (lambda (a b) (+ (x a b) a))))
(foo (+ x 3))))

Just as for the equivalent tetrecletrec* expression, it
must—be-is_an error if it is not possible to evaluate each
(expression) of every internal definition in a (body) without
assigning or referring to the value of any-the corresponding

(variable) being—definedor the (variable) of any of the
definitions that follow it in (body).

It is an error to define the same identifier more than once
in_the same (body)._

Wherever an internal definition may occur, (begin
(definitiony) ...) is equivalent to the sequence of defini-
tions that form the body of the begin.

5.2.3. Multiple-value definitions

The construct define-values introduces new definitions

like define, but can create multiple definitions from a
single expression returning multiple values. It is allowed

wherever define is allowed.

(define-values (formals) (expression))

It is an error if a variable appears more than once in the
set of (formals). _

syntax

Semantics: (Expression) is _evaluated, and the (formals)

are bound to the return values in the same way that
the (formals) in a lambda expression are matched to the
arguments in a procedure call.
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5.3. Syntax definitions

Syntax definitions are valid enly—at—the—tep—levelof—=a

wherever definitions are. They have the following form:
(define-syntax (keyword) (transformer spec))

(Keyword) is an identifier, and the (transformer spec)
should be an instance of syntax-rules. The—If the
definecsyntax occurs at the top level, then the top-
level syntactic environment is extended by binding the
(keyword) to the specified transformer—

Thereisno-, but existing references to any top-level bindin
for (keyword) remain unchanged. Otherwise, it is an

define-syntaxinternal syntaz definitionanatlogue-of-internal
definitiens, and is local to the (body) in which it is defined.

AN ARAANAANAANNARAA

(let ((x 1) (v 2)) (define-syntd2 dvap! (syntax-rules ()

g‘ > J
Macros can expand into definitions and-syntax-definitions
in any context that permits themm/l;lg\y/evyg it is an error
for a definition er—s: 5 ‘
1 dwhos e ic Lod—to_dotermi het]
some—form—in—to define an identifier whose binding has
to be known in order to determine the meaning of the

definition itself, or of any preceding definition that belongs
to the same group of internal definitions. Similarly, it is
an_error for an internal definition to define an identifier

whose binding has to be known in order to determine the
boundary between the greup-internal definitions and the

expressions that-felewthe-grotpof the body it belongs to.

For example, the following are errors:

(define define 3)
(begin (define begin list))

(let-syntax
((foo (syntax-rules ()
((foo (proc args ..
(define proc
(lambda (args ...)
body ...))))))

.) body ...)

(et ((x 3))
(foo (plus x y) (+ x y))
(define foo x)
(plus foo x)))

5.4. Record type definitions

Record type definitions are_used to introduce new data

types, called record types. s, The values of a record type
are called records WM

(et O__(define-values (x y>=fv8lues 1 2)) (+ x y)) each of which holds a single location. A predicate
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a constructor, and field accessors and mutators are defined

for each record type. Record type definitions are valid
wherever definitions are.

(define-record-type (name) syntax
(constructor) (pred) (field) ...)
Syntaz: (name) and (pred) should be identifiers. The

(constructor) should be of the form
((constructor name) (field name) ...)

and each (field) should be either of the form
((field name) (accessor name))

or of the form
((field name) (accessor name) (modifier name))

It is an_error for the same identifier to occur more than
once as a field name.

define-record-type is generative: each use creates a
new_record type that is distinct from all existing types,
including Scheme’s predefined types and other record types
~even record types of the same name or structure.

An instance of define-record-type is equivalent to the
following definitions:

e (name) is bound to a representation of the record type
itself. This may be a run-time object or a purel
syntactic representation.

e (constructor name) is bound to a procedure that takes
as many arguments as there are (field name)s in the

({constructor name) ...) subform and returns a new
record_of type (name). Fields whose names are
listed with (constructor name) have the corresponding

all other fields are unspecified.

e (pred) is bound to a predicate that returns #t when
iven a value returned by the procedure bound to
(constructor name) and #f for everything else.

e Each (accessor name) is bound to a procedure that
takes a record of type (name) and returns the current
value of the corresponding field. Tt is _an error to
pass an accessor a value which is not a record of the
appropriate type.

e Each (modifier name) is bound to a procedure that
takes_a_record of type (name) and a value which
becomes the new value of the corresponding field; an
unspecified value is returned. It is an error to pass a
modifier a first argument which is not a record of the
appropriate type.

For instance, the following definition

(define-record-type <pare> (kons x y) are? (x kar set-kar

defines kons to_be a_ constructor, kar and kdr to be

accessors, set-kar! to be a modifier, and pare? to be a
redicate for instances of <pare>.

(pare? (koms 1 2)) = #t
(pare? (cons 1 2)) = #f
(kar (kons 1 2)) =1
(kdr (kons 1 2)) = 2
(let ((k (kons 1 2)))

(set-kar! k 3)

(kar k)) = 3

5.5. Libraries

Libraries provide a way to organize Scheme programs into
reusable parts with explicitly defined interfaces to the rest
of the program. This section defines the notation and

semantics for libraries.

5.5.1. Library Syntax

A library definition takes the following form:

(define-library (library name)
(library declaration) ...)

(library name) is a list_whose members are identifiers or

unsigned exact integers that is used to identify the librar
uniquely when importing from other programs or libraries.

Libraries whose first identifier is scheme are reserved for use

by this report and future versions of this report. Libraries

whose first identifier is srfi are reserved for libraries
implementing Scheme Requests for Implementation.
A (library declaration) may be any of:

e (export (export spec) ...)

e (import (import set) ...)

e (begin (command or definition) ...)

e (include (filename;) (filenames) ...)

e (include-ci (filename;) (filenames) ...)
e (cond-expand (cond-expand clause) ...)

An export declaration specifies a list of identifiers which
can_be made visible to other libraries or programs. An
(export spec) takes one of the following forms:

e (identifier)

e (rename (identifiery) (identifiers))



In an (export spec), an (identifier) names a single binding
defined within or imported into_the library. where the
external name for the export is_the same as _the name
of the binding within the library. A rename spec
exports_the binding defined within or imported into_ the
library and named by (identifier:) in each ((identifiery)
(identi fiers)) pairing, using (identifiers) as the external

name,

An_import declaration provides a way to import the
identifiers exported by a library. Each (import set) names
a set of bindings from another library and possibly specifies
local names for the imported bindings. It takes one of the

e (library name)

e (only (import set) (identifier) ...)
e (except (import set) (identifier) ...)
e (prefix (import set) (identifier))

e (rename (import seti) ((identifiers) (identifier))

o)

~

In the first form, all of the identifiers in the named library’s
export,_clauses are imported with the same names (or the
exported names if exported with rename). The additional
(import set) forms modify this set as follows:

e only produces a subset of the given (import set),
including only the listed identifiers (after an

renaming). It is an error if any of the listed identifiers
are not found in the original set.

e except produces a subset of the given (import set),
excluding the listed identifiers (after any renaming).
It is an error if any of the listed identifiers are not
found in the original set.

 rename modifis the given (import set), replacing each
instance of (identifier ) with (identifiers). It is an
error if any of the listed identifiers are not found in

e prefix automatically renames all identifiers in the

given (import set), prefixing each with the specified
(identifier)

The_top level of a program may also include import
declarations. In a library declaration, it is an error to
import_the same identifier more than once with different
bindings, or to redefine or mutate an imported binding
with define, define-syntax or set!. However, a REPL
should permit these actions.

and include-ci declarations are

The begin, include, and

used to specify the commands and definitions that make
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up_the body of the library. ~The begin declaration
takes a list of expressions and definitions to be spliced

literally, analogous to_ the top-level begin.  Both

the include and include-ci declarations take one or
more filenames expressed as string literals, apply an
implementation-specific algorithm to find correspondin

files, read the whole contents of each file, and include the

results into the library body or program as though wrapped
in a top-level begin. The difference between the two is

that include-ci reads cach file as if it began with the

#!fold-case directive, while include does not. All three

may appear at the top level of a program.

Note: Implementations are encouraged to search for files in
the directory which contains the including file, and to provide
a way for users to specify other directories to search.

Note: For portability, include and include-ci must operate
on source files. Their operation on other kinds of files necessaril

The cond-expand library declaration provides a way to
statically expand different library declarations dependin

on the implementation under which the library is bein
loaded. A (cond-expand clause) takes the following form:

((feature requirement) (library declaration) ...)

The last clause may be an “else clause,” which has the form

(else (library declaration) ...)

A (feature requirement) takes one of the following forms:

(feature identifier)

e (library (library name))

o (and (feature requirement) ...)
e (or (feature requirement) ...)

e (not (feature requirement))

Each implementation maintains a list of feature identifiers
which _are present, as well as a list of libraries which
can be imported. The value of a (feature requirement)
Is_determined by replacing each_(feature identifier) and
(library (library name)) on_the implementation’s lists
with #t, and all other feature identifiers and library
names with #£, then evaluating the resulting expression
as_a_Scheme boolean expression under the normal
interpretation of and, or, and not.

A cond-expand is_then expanded by evaluating the
(feature requirement)s of successive (cond-expand clause)s

in order, until one of them returns #t. When a true clause

is_found, the corresponding (library declaration)s are
spliced into the current library definition and the remainin
clauses are ignored. If none of the (feature requirement)s
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evaluate _to_#t, then if there is an else clause, its
(library declaration)s are included. Otherwise, the

cond-expand has no effect.

The exact features provided are implementation-defined
but for portability a core set of features is given in
appendix Bl

After all cond-expand library declarations are expanded,
a new environment is constructed for the library consisting
of all imported bindings. The expressions and declarations
from all begin, include and include-ci declarations are
expanded in that environment in the order in which they
occur in the library declaration.

The top-level expressions in a library are executed in the
order in which they occur when the library is loaded. A
library is loaded zero or more times when it is imported
by a program or by another library which is about to be
loaded, but must be loaded at least once per program in
which it is so imported.

5.5.2. Library example

The following_ example shows how a program may_ be
divided into libraries plus a relatively small main program.
If the main program is _entered into a REPL, it is not
necessary to import the base module.

with the expression type parameterize, and is described

A program may use a top-level definition to bind any vari-
able. It may subsequently alter any such binding by an
assignment (see . These operations do not
modify the behavior of Scheme’s built-in procedures, or
any procedure defined in a library (see section[5.5). Alter-
ing any top-level binding that has not been introduced by
a definition has an unspecified effect on the behavior of the
built-in procedures.

6.1. Equivalence predicates

A predicate is a procedure that always returns a boolean
value (#t or #£). An equivalence predicate is the compu-
tational analogue of a mathematical equivalence relation
(it is symmetric, reflexive, and transitive). Of the equiva-
lence predicates described in this section, eq? is the finest
or most discriminating, and-equal? is the coarsest—, and
Eqwveqv? is slightly less discriminating than eq?.

(eqv? obj1 obj2) procedure

The eqv? procedure defines a useful equivalence relation
on objects. Briefly, it returns #t if obj; and obj, shewdd

(export make rows col r,e} Zch ?,re nor. all 1nee agéi!e%e%sl )t)he (Si%nmc?r Ob‘]sect‘géme base))

pegtiadapgsifigatiop, of equ? holds fpr all impls-

(define-library (example grid)

(define-library (example life) (export life) (im orf:oug‘gé (es

; Main program. (import (scheme base)

;3 Initialize a grid with a glider.(define grid (make-grid 24 24)) (grid-set! grid 1 1 #true)(grid-set! grid 2 2 #true)
e obj; and obj, are both #t or both #f.

+iRun for 80 iterations.(life grid 80)
e obj; and objy are both symbols and

(string=7 (symbol->string objl)
(symbol->string obj2))

6. Standard procedures —  #t

This chapter describes Scheme’s built-in procedures. Fhe

b2

Note:
interned symbol” as alluded to in section [6.5} This re-
port does not presume-to-specify the behavior of eqv? on
implementation-dependent extensions.

This assumes that neither obji nor obj2 is an “un-

@&Wﬁm 7 ' ( ‘ s e 0bj; and obj, are both numbers, are numerically equal
) A ’ e o (see =, section [6.2)), and are either both exact or both
absolute—value-of-a—number—and-thevariable-and +eager

inexact.

are intimately associated with the expression types delay
e obji and objp are both characters and are the same
the same way, the procedure make-parameter is botd-to character according to the char=? procedure (sec-

e beth-obj; and obj, are both the empty list.

_

P intimately associated



e 0bj; and objy are pairs, vectors, bytevectors, records
or strings that denote the same loeations-]ocation in

the store (section [3.4).

The eqv? procedure returns #£ if:

e obj; and objs are of different types (section (3.2)).
e one of obj; and obj, is #t but the other is #£.

e 0bj; and objy are symbols but

(string=? (symbol->string obji)
(symbol->string obj2))
— #f

e one of obj; and objs is an exact number but the other
is an inexact number.

e 0bj; and objs are numbers for which the = procedure

returns #£, and nan? returns #£ for both.

e 0bj; and obj, are characters for which the char=? pro-
cedure returns #f.

e one of obj; and obj is the empty list but the other is
not.

e 0bj; and objy are pairs, vectors, bytevectors, records
or strings that denote distinct locations.

e 0bj; and objy are procedures that would behave differ-
ently (return different vatue{s}-values or have different
side effects) for some arguments.

(eqv? ’a ’a) = #t
(eqv? ’a ’b) = #f
(eqv? 2 2) = #t
(equv? 2O > () = #t
(eqv? 100000000 100000000) — #t
(eqv? (cons 1 2) (cons 1 2))= #f
(eqv? (lambda () 1)

(lambda () 2)) = #f

(eqv? #f ’nil) = #f
{Tet—p(Tambda—<(x)—x)H)—HLeqvZppH———

The following examples illustrate cases in which the above
rules do not fully specify the behavior of eqv?. All that
can be said about such cases is that the value returned by
eqv? must be a boolean.

(eqv? "M "m) = unspecified
(equ? #0) ’#0) = unspecified
(eqv? (lambda (x) x)

(lambda (x) x)) = unspecified
( egv?—¢ let ((p (lambda (x3=%))unspeqs ))
(eqv? ( lambda (x) x)

(lambda (y) y)) = unspecified
(eqv? *nan.0 +nan.0) = = unspecified
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The next set of examples shows the use of eqv? with proce-
dures that have local state. The Gen—countergen-counter
procedure must return a distinct procedure every time,
since each procedure has its own internal counter. The
Gen—lesergen-loser procedure, however, returns equiva-
lent procedures each time, since the local state does not
affect the value or side effects of the procedures. However

RAAAARAAL
eqv? may or may not detect this equivalence.

(define gen-counter
(lambda ()
(let ((m 0))
(lambda () (set! n (+ n 1)) n))))
(let ((g (gen-counter)))

(eqv? g g)) = #t
(eqv? (gen-counter) (gen-counter))
= #f

(define gen-loser

(lambda ()

(let ((n 0))
(lambda () (set! n (+ n 1)) 27))))

(let ((g (gen-loser)))

(eqv? g g)) = #t
(eqv? (gen-loser) (gen-loser))

= unspecified

(letrec ((f (lambda () (if (eqv? f g) ’both ’f)))
(g (lambda () (if (eqv? f g) ’both ’g))))
(eqv? £ g))
= unspecified
(letrec ((f (lambda () (if (eqv? f g) ’f ’both)))
(g (lambda () (if (eqv? f g) ’g ’both))))
(eqv? £ g))

= #f

Since it is an error to modify constant objects (those re-
turned by literal expressions), implementations are per-
mitted, though not required, to share structure between
constants where appropriate. Thus the value of eqv? on
constants is sometimes implementation-dependent.

(eqv? ’(a) ’(a)) = unspecified
(eqv? "a" "a") = unspecified
(eqv? ’(b) (cdr ’(a b)) => unspecified
(et ((x ’(a)))

(eqv? x x)) = #t

Rationale: The above definition of eqv? allows implementa-
tions latitude in their treatment of procedures and literals: im-
plementations are free either to detect or to fail to detect that
two procedures or two literals are equivalent to each other, and
can decide whether or not to merge representations of equivalent
objects by using the same pointer or bit pattern to represent

both.

(eq? obj; obj2) procedure
"The Egeg? procedure is similar to eqv? except that in some
cases it is capable of discerning distinctions finer than those

detectable by eqv?.
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On symbols, booleans the empty list, pairs, procedures
and non-empty strings, vectors, bytevectors, and records

Egeq? and eqv? are guaranteed to have the same behav-
iorens S S i

. On_numbers and
characters qugj’s behav10r ¢ aracters
is implementation-dependent, but it W111 always return ei-
ther true or false, and will return true only when eqv?

would also return true. On_empty vectors and empt
strings, Egeq? may also behave differently from eqv?en

(eq? ’a ’a) = #t
(eq? ’(a) ’(a)) = unspecified
(eq? (list ’a) (list ’a)) = #f
(eq? "a" "a") = unspecified
(eq? "" "") = unspecified
(eq? 70 7 0) = #t
(eq? 2 2) = unspecified
(eq? #\A #\A) = unspecified
(eq? car car) == unspecified
(let ((n (+ 2 3)))

(eq? n n)) = unspecified
(let ((x ’(a)))

(eq? x x)) = #t
(let ((x ’#0)))

(eq? x x)) = #t
(let ((p (lambda (x) x)))

(eq? p p)) = #t

Rationale: It will usually be possible to implement eq? much

more efficiently than eqv?, for example, as a simple pointer com-
parison instead of as some more complicated operation. One
reason is that it may—net-be-is not always possible to compute
eqv? of two numbers in constant time, whereas eq? implemented
as pointer comparison will always finish in constant time. In

applications using procedures to implement objects with state
Egeq? may be used like-instead of eqv? in-applications—using

-e-since it obeys the

same constraints as eqv?.

(equal? obj; objs) procedure

The Equatequal? procedure recursively compares the con-
tents of pairs, vectors, and-strings-strings, bytevectors, and

records, applying eqv? on other objects such as numbers

and symbols. A—+te-of-thumb-is-that-objeetsare-generally
If two objects are equaleqv?if-they print-thesame—, they
must be Equatequal? may-fail-to-terminate-as well. Even

if its arguments are circular data structures, equal? must
always terminate.

(equal? ’a ’a) = #t
(equal? ’(a) ’(a)) = #t
(equal? ’(a (b) ¢)

>(a (b) <)) = #t
(equal? "abc" "abc") = #t
(equal? 2 2) = #t

(equal? (make-vector 5 ’a)

(make-vector 5 ’a)) —> #t
(equal? (lambda (x) x)
(lambda (y) y)) = unspecified
Note: A rule of thumb is that objects are generally equal? if

they print the same.

6.2. Numbers

It is important to distinguish between the—mathemati-
cal numbers, the Scheme numbers that attempt to model
them, the machine representations used to implement the
Scheme numbers, and notations used to write numbers.
This report uses the types number, complex, real, rational,
and integer to refer to both mathematlcal numbers and
Scheme numbers ] 5 55 5

anel—

6.2.1. Numerical types

Mathematically, numbers may-be-are arranged into a tower
of subtypes in which each level is a subset of the level above
it:

number

complex

real

rational

integer

For example, 3 is an integer. Therefore 3 is also a rational,
a real, and a complex. The same is true of the Scheme
numbers that model 3. For Scheme numbers, these types
are defined by the predicates number?, complex?, real?,
rational?, and integer?.

There is no simple relationship between a number’s type
and its representation inside a computer. Although most
implementations of Scheme will offer at least two different
representations of 3, these different representations denote
the same integer.

Scheme’s numerical operations treat numbers as abstract
data, as independent of their representation as possible.
Although an implementation of Scheme may use fiscnumm;



nternal re resentauons of numbers thls should not be ap-

parent to a casual programmer writing simple programs.

It is necessary, however, to distinguish between numbers
that are represented exactly and those that meay-might not
be. For example, indexes into data structures must be
known exactly, as must some polynomial coefficients in a
symbolic algebra system. On the other hand, the results of
measurements are inherently inexact, and irrational num-
bers may be approximated by rational and therefore inex-
act approximations. In order to catch uses of inexact num-
bers where exact numbers are required, Scheme explicitly
distinguishes exact from inexact numbers. This distinction
is orthogonal to the dimension of type.

6.2.2. Exactness

Scheme numbers are either ezact or ineract. A number is
exact if it was written as an exact constant or was derived
from exact numbers using only exact operations. A number
is inexact if it was written as an inexact constant, if it
was derived using inexact ingredients, or if it was derived
using inexact operations. Thus inexactness is a contagious
property of a number.

If two implementations produce exact results for a com-
putation that did not involve inexact intermediate results,
the two ultimate results will be mathematically equivalent.
This is generally not true of computations involving inex-
act numbers since approximate methods such as fleating
point-floating-point arithmetic may be used, but it is the
duty of each implementation to make the result as close as
practical to the mathematically ideal result.

Rational operations such as + should always produce ex-
act results when given exact arguments. If the operation
is unable to produce an exact result, then it may either
report the violation of an implementation restriction or it
may silently coerce its result to an inexact value. See sec-

tion [6.2.3]
With-the-exeeption-of-Except for inexact->exact, the op-

erations described in this section must generally return in-
exact results when given any inexact arguments. An oper-
ation may, however, return an exact result if it can prove
that the value of the result is unaffected by the inexact-
ness of its arguments. For example, multiplication of any
number by an exact zero may produce an exact zero result,
even if the other argument is inexact.

6.2.3. Implementation restrictions

Implementations of Scheme are not required to implement
the whole tower of subtypes given in section but
they must implement a coherent subset consistent with
both the purposes of the implementation and the spirit
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of the Scheme language. For example, an—implementation
implementations in which all numbers are realmay—still-be

. or in which non-real numbers are always inexact, or in
which exact numbers are always integer, are still quite use-

ful.

Implementations may also support only a limited range of
numbers of any type, subject to the requirements of this
section. The supported range for exact numbers of any
type may be different from the supported range for in-
exact numbers of that type. For example, an implementa-
tion that uses fenzss IEEE double-precision floating-point
numbers to represent all its inexact real numbers may also
support a practically unbounded range of exact integers
and rationals while limiting the range of inexact reals (and
therefore the range of inexact integers and rationals) to the
dynamic range of the flenum-IEEE double format. Further-
more, the gaps between the representable inexact integers
and rationals are likely to be very large in such an imple-
mentation as the limits of this range are approached.

An implementation of Scheme must support exact in-
tegers throughout the range of numbers that—may
be—used—for—permitted as indexes of lists, vectors,
bytevectors, and strlngb or that wrebult from com-
puting the length of ats 3 ne of these.
The length, vector- length bytevector length, and
string-length procedures must return an exact integer,
and it is an error to use anything but an exact integer as
an index. Furthermore, any integer constant within the
index range, if expressed by an exact integer syntax, will
indeed be read as an exact integer, regardless of any imple-
mentation restrictions that may—apply outside this range.
Flnally, the procedures listed below will always return an

e ssttt-exact integer results provided all their
arguments are exact mtegers and the mathematlcally ex-

’2—)’

pected res / results are
mmwmthm the implementation:

+ - *

quotient remainder modulo

max min abs

numerator denominator ged

lcm floor ceiling

truncate round rationalize

expt exact-integercsgrtfloor/ . ceil:

Implementations are encouraged, but not required, to sup-
port exact integers and exact rationals of practically un-
limited size and precision, and to implement the above
procedures and the / procedure in such a way that they
always return exact results when given exact arguments.
If one of these procedures is unable to deliver an exact
result when given exact arguments, then it may either re-
port a violation of an implementation restriction or it may
silently coerce its result to an inexact number—Sueh—a
eoereion—may—;_such a coercion can cause an error later.

Nevertheless, implementations that do not provide exact
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rational numbers should return inexact rational numbers

An implementation may use Heating—peint—floating-point
and other approximate representation strategies for in-
exact numbers. This report recommends, but does not
require, that the IEEE 32-bit—and—64-bitHoatingpeint
standards—754 standard be followed by implementations
that use flenum—{loating-point representations, and that
implementations using other representations should match
or exceed the precision achievable using these floating-point
floating-point standards [17].
illl[)l(/lll(/lll‘rlI'()lll" llli‘ll HTSe “(”l”“l
s—A-the description
WWWM
be followed by _such implementations, particularly with
respect to infinities and NaNs.

Although Scheme allows a variety of written notations for
numbers, any particular implementation may support only
all numbers are real need not support the rectangular and
polar notations for complex numbers. If an implementation
encounters _an_exact numerical constant that it cannot
represent as an exact number, then it may either report a
represent the constant by an inexact number.

In partlcular

6.2.4. Implementation extensions

Implementations ma rovide more than one
representation of floating-point numbers with differin

recisions. In an implementation which does so, an inexact
result must be represented with at least as much precision

as is used to express any of the inexact arguments to that
operation. Ht—is—desirable{but—net—required)—Although
it_is desirable for potentially inexact operations such as
sqrt —W—heﬂ—&pph(—‘é—%@—&kgi—&ﬁ(—‘ﬂ%&—%&tO produce exact
answers whenever possible (for-exammple the square root
ofan—when applied to exact 4—eught—to—-be—an2)—1I
hewever—arguments, if an exact number is operated upon
50 as to produce an inexact result{as—bysert)—and-if-the

34 as—a—, then the most precise fermat
w@@g&avallable must be used—bﬁt—rf—%he—feﬂﬂ%

. lonst_as b orecisi : <t reci
format—available. For example, the value of (sqrt 4)
should be 2, but in an implementation that provides both
single and double precision floating point numbers it ma;

be the latter but must not be the former.

al-In addition, implementations may distinguish special
numbers_called positive infinity, negative infinity, NaN,
and negative zero.

Positive infinity is regarded as an inexact real (but not

rational) number that _represents an indeterminate value
greater _than the numbers represented by all rational
numbers. Negative infinity is regarded as an inexact real
(but not rational) number that represents an indeterminate
value less than the numbers are—need—net—support—the
represented by all rational numbers.

A _NaN_is regarded as an inexact real (but not rational)
number so indeterminate that it might represent any real
value, including positive or negative infinity, and might
even be greater than positive infinity or less than negative
infinity. It might even represent no number at all, as in the
%Mﬁﬂﬁﬁrp}eﬁwﬁmﬁm%eﬂeeﬂﬂ%eﬁ—&ﬁ

G oo > > Zsaveny

6.2.5. Syntax-efnumerical-econstants
Note that the real and the imaginary parts of a complex

number can be infinities or NaNs.

is_distinct (in_the sense of eqv?) from 0.0. A Scheme
implementation is not required to distinguish negative zero.
If it does, however, the behavior of the transcendental
functions is sensitive to the distinction in accordance with

IBEE 754,

Furthermore, the negation of negative zero is ordinary zero
and vice versa, This implies that the sum of two negative
zeros is negative, and the result of subtracting (positive)

6.2.5. Syntax of numerical constants

The syntax of the written representations for numbers is
described formally in section Note that case is not

significant in numerical constants.

A-—number—may-A number can be written in binary, oc-
tal, decimal, or hexadeeimal-hexadecimal by the use of a

radix prefix. The radix prefixes are #b (binary), #o (octal),

d (decimal), and #x (hexadeeimathexadecimal). With no
radix prefix, a number is assumed to be expressed in deci-
mal.

A numerieal-eonstant-maynumerical constant can be spec-

ified to be either exact or inexact by a prefix. The prefixes
are #e for exact, and #i for inexact. An exactness prefix
may appear before or after any radix prefix that is used.
If the written representation of a number has no exactness

prefix, the constant maybe-either-or—H—is inexact if it



contains a decimal point

%he@}ae&of—a—dfgrt—e%hewmr an exponent. Otherw1se

it is exact.

In systems with inexact numbers of varying precisions
it may—can be useful to specify the pre01s10n of a con-
stant. For this purpose,
&M&%meen
with an exponent marker that indicates the desired pre-
cision of the inexact representation. The letters s, £, d,

and lspeerfy—%heﬂs&eémshort smgle double,

and long premsmn -

are acce table in lace of espeet s
the implementation. The default precision has at least as

much precision as double, but implementations may wish
te-allow this default to be set by the user.

3.14159265358979F0
Round to single — 3.141593
0.6L0

Extend to long — .600000000000000

The numbers positive infinity, negative infinity and NaN
are_written +inf.0. -inf.0 and +nan.0 respectively.
Implementations _are not required to support them, but
if they do, they must be in conformance with IEEFE 754,
However, implementations are not_required to_ support

signaling NaNs, or provide a way to distinguish between
different NaNs.

6.2.6. Numerical operations

The reader is referred to section [[.3.3] for a summary of
the naming conventions used to specify restrictions on the
types of arguments to numerical routines. The examples
used in this section assume that any numerical constant
written using an exact notation is indeed represented as
an exact number. Some examples also assume that cer-
tain numerical constants written using an inexact notation
can be represented without loss of accuracy; the inexact
constants were chosen so that this is likely to be true in
implementations that use flenums-IEEE doubles to repre-
sent inexact numbers.

(number? obj) procedure
(complex? obj) procedure
(real? obj) procedure
(rational? obj) procedure
(integer? obj) procedure

These numerical type predicates can be applied to any kind
of argument, including non-numbers. They return #t if the
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object is of the named type, and otherwise they return #f.
In general, if a type predicate is true of a number then
all higher type predicates are also true of that number.
Consequently, if a type predicate is false of a number, then
all lower type predicates are also false of that number.

If z is an—inexaet—a complex number, then (real? z) is
true if and only if (zero? (imag-part z)) is-and (exact?
(imag-part z)) are both true. If z is an inexact real
number, then (integer? z) is true if and only if (= x
(round z)).

The numbers +inf .0, ~inf.0, and +nan.0 are real but not

rational,

(complex? 3+4i) = #t
(complex? 3) = #t
(real? 3) = #t
(real? -2.5+ 0i) = #t
(real? -2.5+ 0.0i) = #1
(real? #elelO) = #t
( rational?— real? +inf.0) —> #t
(rational? -inf.0) — #f
(rational? 6/10) = #t
(rational? 6/3) — #t
(integer? 3+0i) = #t
(integer? 3.0) = #t
(integer? 8/4) = #t

Note:
bers is unreliable, since any inaccuracy mmay—might affect the

The behavior of these type predicates on inexact num-

result.

Note: In many implementations the precedure-will-be-thesame
as——and-the-complex? procedure will be the same as number?,

but unusual implementations may be able to represent some
irrational numbers exactly or may extend the number system
to support some kind of non-complex numbers.

procedure
procedure

(exact? z)
(inexact? z)

These numerical predicates provide tests for the exactness
of a quantity. For any Scheme number, precisely one of
these predicates is true.

(exact? 3.0) — #f
(exact? #e3.0) — #t
(inexact? 3.) == #t

(exact-integer? 2) procedure

Returns #t if 2 is_both exact and an integer; otherwise
returns #1.

(exact-integer? 32) — #t
(exact-integer? 32.0) = #£f
(exact-integer? 32/5) — #f
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(finite? 2) inexact library procedure

The finite? procedure returns #t on all real numbers

except, +inf.0, -inf.0, and +nan.0, and on complex
numbers if their real and imaginary parts are both finite.

Otherwise it returns #£.

(finite? 3) — #t
(finite? +inf.0) =~ = #f
(finite? 3.0+inf 0) = = #f

(nan? 2) inexact library procedure

The nan? procedure returns #t on +nan.0, and on an
complex number if its real part or its imaginary part or

both are +nan.0. Otherwise it returns #£.

(nan? +nan.0) — #t
(nan? 32) = #f
(nan? +nan.0+5.0i) — #t
(nan? 1+2i) = #f

(= 21 290 23 ...) procedure
(K x1 29 3 ...) procedure
Gz o290 T3 ...) procedure
(<= 21 29 3 ...) procedure
(>= 21 29 23 ...) procedure

These procedures return #t if their arguments are (respec-
tively): equal, monotonically increasing, monotonically de-
creasing, monotonically nondecreasing, or monotonically
nonincreasing, and #f otherwise. If any of the arguments
are tnan.0, all the predicates return #£.

These predicates are required to be transitive.

Note:
Lisp-like languages are not transitive.

The traditional implementations of these predicates in

Note:
ing these predicates, the results may-be-are unreliable because a
small inaccuracy may-can affect the result; this is especially true

While it is not an error to compare inexact numbers us-

of = and zero?. When in doubt, consult a numerical analyst.

(zero? z2) procedure
(positive? x) procedure
(negative? x) procedure
(0dd? n) procedure
(even? n) procedure

These numerical predicates test a number for a particular
property, returning #t or #f. See note above.

procedure
procedure

(max x1 22 ...)
(min x1 29 ...)

These procedures return the maximum or minimum of their
arguments.

(max 3 4)
(max 3.9 4)

— 4
= 4.0

; exact
; inexact

Note:
inexact (unless the procedure can prove that the inaccuracy is

If any argument is inexact, then the result will also be

not large enough to affect the result, which is possible only in
unusual implementations). If min or max is used to compare
numbers of mixed exactness, and the numerical value of the
result cannot be represented as an inexact number without loss
of accuracy, then the procedure may report a violation of an
implementation restriction.

procedure
procedure

(+ 21 )
(* 21 )

These procedures return the sum or product of their argu-
ments.

(+ 3 4) = 7

+ 3) = 3

+) = 0

(* 4) = 4

(%) = 1
(- z1 29) procedure
(- 2 procedure
(- 21 29 ...) procedure
(/ 21 z2) procedure
(/ 2) procedure
(/ z1 729 ...) procedure

With two or more arguments, these procedures return the
difference or quotient of their arguments, associating to the
left. With one argument, however, they return the additive
or multiplicative inverse of their argument. It is an error

if any argument of / other than the first is an exact zero.

(- 3 4) — -1
(- 345) — -6
-3 = -3
(/ 345) — 3/20
« 3) = 1/3
(abs x) procedure

The Absabs procedure returns the absolute value of its
argument.

(abs -7) == 7

(floor/ ny1 nag) procedure
(floor-quotient nj ng) procedure
(floor-remainder n; ns) procedure
(ceiling/ ni no) procedure
(ceiling-quotient my ng) procedure
(ceiling-remainder n; ng) procedure
(truncate/ ni ns) procedure



(truncate-quotient n; ng) procedure
(truncate-remainder nj; ng) procedure
(round/ ni na) procedure
(round-quotient n; ng) procedure
(round-remainder ni no) procedure
(euclidean/ ny ns) procedure
(euclidean-quotient nj ns) procedure
(euclidean-remainder nj; na) procedure
(centered/ n; ns) procedure
(centered-quotient n; mngo) procedure
(centered-remainder ni; no) procedure

These procedures, all in the division library, implement

number-theoretic (integer) division.

It is_an_error if no

Hs zero. The procedures ending in /is—ean—integer:—
return two integers; the other procedures return an integer.
All the procedures compute a quotient n, and remainder
n, such that ny = ngng 4 n,. For each of the six division
operators, there are three procedures defined as follows:

{quetient—)—— ((operator) i
(operator)-quotient ni n2) = (‘FR@&H‘]:@* Ng

(operator)-remainder mi n2)==  nr

(
{

< ttmt<Arat

Eb&zez@e@swr“

is determined deterrnlned

b the choice of 1nte er Ng: Ny =1 . Each set of
operators uses a different choice of ng:

ceiling  ng = [m/nal
floor  ng=|m/nal
truncate  ng = truncate(ni/ng)

ng = [ny /o]

round
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(modulo 13 4)
(remainder 13 4)

(modulo -13 4)
(remainder -13 4)

(modulo 13 -4)
(remainder 13 -4)

(modulo -13 -4)
(remainder -13 -4)

2y

(remainder -13 -4.0) -1.0 ; inexact

Note: These procedures are provided for backward
compatibility with earlier versions of this report.

procedure
procedure

(ged ny ...)
(lem ng ...)

These procedures return the greatest common divisor or

always non-negative.

(gecd 32 -36) = 4
(gcd) = 0
(lem 32 -36) = 288
(lcm 32.0 -36) —> 288.0 ; inexact
(1lcm) — 1
(numerator ¢) procedure
(denominator q) procedure

These procedures return the numerator or denominator of
their argument; the result is computed as if the argument
was represented as a fraction in lowest terms. The denom-
inator is always positive. The denominator of 0 is defined

DOt . . tg be 1.
euclidean ifng > 0,1, = [ny/nal; if no <0,nq = [n1/n

centered choose n, such that

For any of the operators, and for integers ny and ns with

no not equal to 0,

(= n1 (+ (x ny ( quotient—

—|no /2] <=np < N9 /2

(numerator (/ 6 4))

(denominator (/ 6 4))

(denominator
(exact->inexact (/ 6 4))) = 2.0

— 3
— 2

(operator)-quotient mn1 m2))

( remainder— (operator)-remainder ni m2)))
= #t (floor x) procedure
provided all numbers involved in that computation are ex- (ceiling ) procedure
act (truncate z) procedure
(round z) procedure
See [B] for discussion.

. These procedures return integers.  The Fleerfloor
(quotrent n n2) procedure procedure returns the largest integer not larger than z.
(remainder n; ny) procedure  pp, Ceilingceiling procedure returns the smallest inte-
(modulo n; ng) procedure

The quotient and remainder procedures are equivalent
to _truncate-quotient and truncate-remainder

AT A AN AN AR ARSI
respectivel and modulo is___equivalent  to
floor-remainder:

ger not smaller than z—, Truncatetruncate returns the
integer closest to « whose absolute value is not larger than
the absolute value of -, and Reundround returns the
closest integer to x, rounding to even when x is halfway
between two integers.

mts. Fheatesielt—is n,
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Rationale: The Reundround procedure rounds to even for con-
sistency with the default rounding mode specified by the IEEE
Hoatingpoint-754 IEEE floating-point standard.

Note:

then the result will also be inexact. If an exact value is needed,

If the argument to one of these procedures is inexact,

the result showld-can be passed to the inexact->exact proce-
dure.

(floor -4.3)
(ceiling -4.3)
(truncate -4.3)
(round -4.3)

-5.0

(floor 3.5)
(ceiling 3.5)
(truncate 3.5)
(round 3.5) ; inexact
(round 7/2)
(round 7)

4 ; exact

et vied

(rationalize z y) procedure

The Rationatizerationalize procedure returns the sim-
plest rational number differing from z by no more than
y. A rational number 7, is simpler than another ratio-
nal number 7y if 11 = p1/q1 and ro = pa/ge (in lowest
terms) and |p1] < |p2| and |¢1] < |g2|. Thus 3/5 is simpler
than 4/7. Although not all rationals are comparable in
this ordering (consider 2/7 and 3/5) any interval contains
a rational number that is simpler than every other rational
number in that interval (the simpler 2/5 lies between 2/7
and 3/5). Note that 0 = 0/1 is the simplest rational of all.

(rationalize
(inexact->exact .3) 1/10) — 1/3 ; exact

(rationalize .3 1/10) —> #i1/3 ; inexact
(exp 2) inexact library procedure
(log 2) inexact library procedure
(sin 2) inexact library procedure
(cos z) inexact library procedure
(tan z) inexact library procedure
(asin 2) inexact library procedure
(acos 2) inexact library procedure
(atan 2) inexact library procedure
(atan y x) inexact library procedure

These procedures &Fe—p&t——@f—e\feﬁ’—f}ﬂ-p}eﬂ}eﬂt—&t—leﬂ—t—hﬁ%

compute the usual
The The Leglog procedure com-

transcendental functions.
putes the natural logarithm of z (not the base ten log-

arithm). The #simasin, acos,
compute arcsine (sin~!), arccosine (cos~!), and arctan-
gent (tan~1!), respectively. The two-argument variant of

atan computes (angle (make-rectangular z y)) (see

and atan procedures

below), even in implementations that don’t support generat
eomplexnaumbersthe complex library.

In general, the mathematical functions log, arcsine, arc-
cosine, and arctangent are multiply defined. The value of
log z is defined to be the one whose imaginary part lies in
the range from —7 (exclusive) to m (inclusive). The value
of log0 is undefined. With log defined this way, the val-
-1 z are according to the

ues of sin"!z, cos™!z, and tan~!

following formulee:

sin™!z = —ilog(iz + V1 — 22)

-1

(¢0)] !

z=m/2—sin"" z
z = (log(1 +1iz) —log(l —iz))/(27)

The above specification follows [33], which in turn
cites [25]; refer to these sources for more detailed discussion
of branch cuts, boundary conditions, and implementation
of these functions. When it is possible these procedures
produce a real result from a real argument.

tan™!

(sqrt 2) inexact library procedure

Returns the principal square root of z. The result will
have either a positive real part, or a zero real part and a
non-negative imaginary part.

(exact-integer-sqrt k) procedure

Returns two non-negative exact integers s and r where
k=s>+rand k < (s+1)>2.

(exact-integercsqrt 4) =~ =20
(exact-integer-sqrt 5) = 21
(expt 21 29) procedure
Returns z; raised to the power zy. For #—=-8-nonzero z1,
this is
lez — %2 log z1
B-ist-if==0-and-B-etherwise—0.0% is 1.0 if z = 0.0, and

AN AAAAAAAAARANAARNNRNRAA

0.0 if (real-part z) is positive. For other cases in which
the first argument is zero, either an error is signalled or an
unspecified number is returned.

(make-rectangular z; x2)
(make-polar 3 z4)
(real-part z)

(imag-part z)

(magnitude z)

(angle 2)

complex library procedure
complex library procedure
complex library procedure
complex library procedure
complex library procedure
complex library procedure

: > se-Let @1, xo,

T3, and z4 wbe real numbers and z is—be a complex
number such that

2 =11 + Toi = x5 - T4

Then all of



(make-rectangular x1 x2) = z
(make-polar z3 z4) == z
(real-part 2z) = T
(imag-part z) = T2
(magnitude 2) = |z3]
(angle z) = Tangle

are true, where —m < Tangle < T With Tapgie = 4 + 270

for some integer n.

The make-polar procedure may return an inexact complex
number even if its arguments are exact.

The Magnitudemagnitude procedure is the same

Rationale:

as abs for a real argument, but abs must—be—present—in
rtH—}Hﬂf)}(—‘ﬂi(—‘ﬂt—(rt—}eﬂ%b in the base hbrar whereas magnltude

eempleaeﬂﬂmbefsm in the optional complex library.

procedure
procedure

(exact->inexact z)
(inexact—->exact z)

The procedure Exactexact—->inexact returns an inexact
representation of z. The value returned is the inexact num-
ber that is numerically closest to the argument. For inexact

arguments, the result is the same as the argument. For
exact complex numbers, the result is a complex number
whose real and imaginary parts are the result of applyin

exact->inexact to the real and imaginary parts of the
W If an exact argument has no rea-

sonably close inexact equivalent, then a violation of an im-
plementation restriction may be reported.

The procedure Inexactinexact->exact returns an exact
representation of z. The value returned is the exact num-
ber that is numerically closest to the argument. For exact

arguments, the result is the same as the argument. For
the result is a complex number whose real and imaginary
parts are the result of applying inexact->exact to the real
and imaginary parts of the argument, respectively. If an

inexact argument has no reasonably close exact equivalent,
then a violation of an implementation restriction may be
reported.

These procedures implement the natural one-to-one corre-
spondence between exact and inexact integers throughout
an implementation-dependent range. See section [6.2.3

6.2.7. Numerical input and output

procedure
procedure

(number->string z)
(number->string z radiz)
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‘ ‘ : It is an error if radiz is
WZ 8, 10 or 16 If omitted, radiz defaults to
10. The procedure number->string takes a number and a
radix and returns as a string an external representation of
the given number in the given radix such that

(let ((number number)
(radix radiz))
(eqv? number
(string->number (number->string number
radix)
radix)))

is true. It is an error if no possible result makes this ex-
pression true.

If z is inexact, the radix is 10, and the above expression
can be satisfied by a result that contains a decimal point,
then the result contains a decimal point and is expressed
using the minimum number of digits (exclusive of exponent
and trailing zeroes) needed to make the above expression
true [6], [8]; otherwise the format of the result is unspecified.

The result returned by number->string never contains an
explicit radix prefix.

Note:
number or is a complex number with a non-rational real or

The error case can occur only when z is not a complex

imaginary part.

If z is an inexact number represented-using-Honums;

and the radix is 10, then the above expression is normally sat-

Rationale:

isfied by a result containing a decimal point. The unspecified
case allows for infinities, NaNs, and nen-flentim-unusual repre-
sentations.

procedure
procedure

(string->number string)
(string->number string radiz)

Returns a number of the maximally precise representation
expressed by the given string. must-be-an-exactinteger;
eitherIt is an error if radiz is not 2, 8, 10, or 16. If supplied,
radiz is a default radix that may-will be overridden by an
explicit radix prefix in string (e.g. "#0177"). If radix
is not supplied, then the default radix is 10. If string
is not a syntactically valid notation for a number, then
string->number returns #f.

(string->number "100") = 100
(string->number "100" 16) = 256
(string->number "1e2") = 100.0

" 1]

Note:
plementations in the following ways. Whenever string contains

an_explicit radix prefix S%I‘—]:ﬂg—m >number is permltted
to return #f If

all numbers supported by an implementation are real then

The domain of string->number may be restricted by im-

string->number is permitted to return #f whenever string uses
the polar or rectangular notations for complex numbers. If
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all numbers are integers, then string->number may return #f
whenever the fractional notation is used. If all numbers are
exact, then string->number may return #f whenever an expo-
nent marker or explicit exactness prefix is used;-erif-a—appears

string->number may return #f whenever a decimal point is

If all inexact numbers are integers, then

used.

6.3. Booleans

6.3.1. Booleans

The standard boolean objects for true and false are writ-
ten as #t and #f. Alternatively, they may be written
#true_and #false, respectively. What really matters,
though, are the objects that the Scheme conditional expres-
sions (if, cond, and, or, when, unless, do) treat as true or
false. The phrase “a true value” (or sometimes just “true”)
means any object treated as true by the conditional expres-
sions, and the phrase “a false value” (or “false”) means any
object treated as false by the conditional expressions.

Of all the standard-Scheme values, only #f counts as false
in conditional expressions. Eﬁ%(:ep{—‘fef—zﬂl-—*rt—&ﬂ%PFPAu

other Scheme values, 1nclud1ng #t,

as true.

Note: Pregmﬂmerﬁeeu%eme&%&%@g@\aother dialects
of Lisps »Scheme

distinguishes #f and the empty list frommmmmm
the symbol nil.

Boolean constants evaluate to themselves, so they do not
need to be quoted in programs.

#t — #t
#f — #f
‘#E = #f
(not obj) procedure

The Netnot procedure returns #t if obj is false, and returns
#f otherwise.

(not #t) = #f
(not 3) —  #f
(not (1list 3)) = #f
(not #f) = #t
(not > Q) = #f
(not (1list)) = #f
(not ’nil) = #f

(boolean? obj) procedure

The Boeteanboolean? predicate returns #t if obj is either
#t or #f and returns #f otherwise.

(boolean? #f) — #t
(boolean? 0) = #f
(boolean? ’()) — #f

6.3.1. Pairs and lists

6.4. Pairs and lists

A pair (sometimes called a dotted pair) is a record structure
with two fields called the car and cdr fields (for historical
reasons). Pairs are created by the procedure cons. The
car and cdr fields are accessed by the procedures car and
cdr. The car and cdr fields are assigned by the procedures
set-car! and set-cdr!.

Pairs are used primarily to represent lists. A list-list can be
defined recursively as either the empty list or a pair whose
cdr is a list. More precisely, the set of lists is defined as
the smallest set X such that

e The empty list is in X.

o If list is in X, then any pair whose cdr field contains
list is also in X.

The objects in the car fields of successive pairs of a list are
the elements of the list. For example, a two-element list
is a pair whose car is the first element and whose cdr is a
pair whose car is the second element and whose cdr is the
empty list. The length of a list is the number of elements,
which is the same as the number of pairs.

The empty list is a special object of its own type {iIt is
not a pairy:, it has no elements, and its length is zero.

Note:
length and are terminated by the empty list.

The above definitions imply that all lists have finite

The most general notation (external representation) for
Scheme pairs is the “dotted” notation (¢q c2) where ¢;
is the value of the car field and c¢s is the value of the cdr
field. For example (4 . 5) is a pair whose car is 4 and
whose cdr is 5. Note that (4 . 5) is the external repre-
sentation of a pair, not an expression that evaluates to a
pair.

A more streamlined notation can be used for lists: the
elements of the list are simply enclosed in parentheses and
separated by spaces. The empty list is written () . For
example,

(abcde)

and
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are equivalent notations for a list of symbols.

A chain of pairs not ending in the empty list is called an
improper list. Note that an improper list is not a list.
The list and dotted notations can be combined to represent
improper lists:

(abc . d
is equivalent to

(a. (. (c.dY

Whether a given pair is a list depends upon what is stored
in the cdr field. When the set-cdr! procedure is used, an
object can be a list one moment and not the next:

(define x (1list ’a ’b ’c))
(define y x)

y = (aboc)
(1ist? y) = #t
(set-cdr! x 4) = unspecified
x = (a . 4
(eqv? x y) = #t

y = (a . 4
(1ist? y) = #f
(set-cdr! x x) = unspecified
(1ist? x) = #f

Within literal expressions and representations of ob-
jects read by the read procedure, the forms ’{datum),
*(datum), ,{datum), and ,@(datum) denote two-ele-
ment lists whose first elements are the symbols quote,
quasiquote, unquote, and unquote-splicing, respec-
tively. The second element in each case is (datum). This
convention is supported so that arbitrary Scheme programs
may—can be represented as lists. That is, according to
Scheme’s grammar, every (expression) is also a (datum)
(see section . Among other things, this permits the
use of the read procedure to parse Scheme programs. See

section 3.3

(pair? obj) procedure

The Pairpair? predicate returns #t if obj is a pair, and
otherwise returns #f.

(pair? ’(a . b)) = #t
(pair? ’(a b c)) = #t
(pair? () = #f
(pair? ’#(a b)) = #£

(cons obj; objz) procedure

Returns a newly allocated pair whose car is obj; and whose
cdr is objp. The pair is guaranteed to be different (in the
sense of eqv?) from every existing object.
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(cons ’a () = (a)

(cons ’(a) ’(b c d)) = ((a) bcd
(cons "a" (b c)) — ("a" b ¢)
(cons ’a 3) — (a . 3)
(cons ’(a b) ’c) = ((ab) . c)

(car pair) procedure

Returns the contents of the car field of pair. Note that it
is an error to take the car of the empty list.

(car ’(a b c)) — a
(car ’((a) b c d)) = (a)
(car >(1 . 2)) = 1
(car *Q) = error
(cdr pair) procedure

Returns the contents of the cdr field of pair. Note that it
is an error to take the cdr of the empty list.

(cdr ’((a) b c 4)) = (b c d)
(cdr > (1 . 2)) == 2
(cdr > ()) = error
(set-car! pair obj) procedure

Stores obj in the car field of pair. The value returned by
set-car! is unspecified.

(define (f) (list ’not-a-constant-list))
(define (g) ’(constant-list))

(set-car! (£) 3) = unspecified
(set-car! (g) 3) = error

(set-cdr! pair obj) procedure

Stores obj in the cdr field of pair. The value returned by
set-cdr! is unspecified.

(caar pair) procedure
(cadr pair) procedure
(cdddar pair) procedure
(cddddr pair) procedure

These procedures are compositions of car and cdr, where
for example caddr could be defined by

(define caddr (lambda (x) (car (cdr (cdr x))))).
Arbitrary compositions, up to four deep, are provided.
There are twenty-eight of these procedures in all.

(null? obj) procedure

Returns #t if obj is the empty list, otherwise returns #£.

(1ist? obj)
Returns #t if obj is a list;—etherwise—. Otherwise, it re-
turns #f. By definition, all lists have finite length and are

terminated by the empty list.

procedure
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(1ist? ’(a b c)) = #t
(list? 7)) = #t
(1list? ’(a . b)) = #f
(let ((x (1list ’a)))
(set-cdr! x x)
(1ist? x)) = #f

(make-list k)
(make-list k fill)

procedure
procedure

Returns a newly allocated list of k£ elements. If a second

argument is given, then each element is initialized to
[._ Otherwise the initial contents of each element is

fill,
unspecified.

(make-list 2 3) (3.3)

(list obj ...) procedure
Returns a newly allocated list of its arguments.

(1ist ’a (+ 3 4) ’c) = (@70

(list) = 0
(length list) procedure
Returns the length of list.

(length ’(a b c)) = 3

(length ’(a (b) (c d e))) = 3

(length Q) = 0
(append list ...) procedure

Returns a list consisting of the elements of the first list
followed by the elements of the other lists.

(append ’(x) ’(y)) = (xy)
(append ’(a) ’(b c d)) = (abcd
(append ’(a (®)) ’((c))) = (a (® ()

The resulting list is always newly allocated, except that
it shares structure with the last list argument. The last
argument may actually be any object; an improper list
results if the last argument is not a proper list.

(append ’(a b) ’(c . d)) = (abc . d
(append ° () ’a) = a
(reverse list) procedure

Returns a newly allocated list consisting of the elements of
list in reverse order.

(reverse ’(a b c)) — (c b a)
(reverse ’(a (b c) d (e (£))))

= ((e (£)) 4 (b ¢) a)

(list-tail list k) procedure

Returns the sublist of list obtained by omitting the first &
elements. It is an error if list has fewer than k& elements.
The Eist-taitlist-tail procedure could be defined by

(define list-tail
(lambda (x k)
(if (zero? k)
X
(list-tail (cdr x) (- k 1)))))

(list-ref list k) procedure

Returns the kth element of list. (This is the same as the
car of (list-tail list k).) It is an error if list has fewer
than k elements.

(list-ref ’(a b c d) 2) — c
(list-ref ’(a b ¢c d)
(inexact->exact (round 1.8)))

—— C

(list-set! list k obj) procedure

It is an error if k is not a valid index of list. The list-set!

procedure stores obj in element k of list. _The value

returned by list-set! is unspecified.

(let ((1s (list ’one ’two ’five!)))
= (ome two three)

(list-set! (0 1 2) 1 "oops"

= error ; constant list

(memq obj list) procedure
(memv obj list) procedure
(member obj list) procedure
(member obj list compare) procedure

These procedures return the first sublist of list whose car
is obj, where the sublists of list are the non-empty lists
returned by (list-tail list k) for k less than the length
of list. If obj does not occur in list, then #£ (not the empty
list) is returned. The Memgmemq procedure uses eq? to com-
pare obj with the elements of list, while memv uses eqv? and
member uses compare, if given, and equal? otherwise.

(memq ’a ’(a b c)) == (abo)
(memq ’b ’(a b ¢)) = (b c)
(memq ’a ’(b ¢ d)) = #f
(memq (list ’a) (b (a) c)) = #f
(member (list ’a)
>(b (a) ©)) = ((a) ©)
( member "B" _____ ('a" "bZ=${"b" 'c') string-cis=?)
( memq 101 ’(100 101 102)) = wunspecified
(memv 101 ’ (100 101 102)) = (101 102)

(list-set! 1s 2 ’three)



(assq obj alist) procedure
(assv obj alist) procedure
(assoc obj alist) procedure
(assoc obj alist compare) procedure

It is an error if alist (for “association list”) is not a list of
pairs. These procedures find the first pair in alist whose
car field is obj, and returns that pair. If no pair in alist has
obj as its car, then #£ (not the empty list) is returned. The
#Assgassq procedure uses eq? to compare obj with the car
fields of the pairs in alist, while assv uses eqv? and assoc
uses compare if given and equal? otherwise.

(define e ’((a 1) (b 2) (c 3)))

cates, memq, memv, member, assq, assv, and assoc do not have
question marks in their names because they return potentiall
useful values rather than just #t or #f.

6.4.1. Symbels

(1ist-copy list)

Returns a newly allocated copy of the given list. Only the
pairs themselves are copied: the cars of the result are the
same (in the sense of eqv? as the cars of list. If the last pair
of list has a cdr which is not_the empty list, the last pair
of the result does too. As a degenerate case, an argument
which is not a list is returned unchanged.

procedure

6.5. Symbols

Symbols are objects whose usefulness rests on the fact
that two symbols are identical (in the sense of eqv?) if
and only if their names are spelled the same way. qlhi%

many-other-applieations;for-For instance, they may—can
be used the way enumerated values are used in Pasealother

languages.

The rules for writing a symbol are exactly the same as the
rules for writing an identifier; see sections [2.1] and [7.1.1}
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It is guaranteed that any symbol that has been returned as
part of a literal expression, or read using the read proce-
dure, and subsequently written out using the write proce-
dure, will read back in as the identical Symbol (in the sense
of eqv”) e ;

Note: Some 1mplementat10ns ef——Seheme—h&ve—&—fe&&tfe

have values known as “ske

symbels’uninterned symbols,”  which defeat erte/read
invarianceeven-in-implementations-with-slashification, and also
generate—exeeptions—to—violate the rule that two symbols are

the same if and only if their names are spelled the same.

(assq ’a e) = (a 1)
(assq ’b e) = (b 2)
(assq ’d e) = #f
(assq (1ist ’a) ’(((a)) ((®)) ((c))))
= #£
(assoc (1list ’a) ’(((a)) ((®)) ((c)I))
= ((a))
ae00.2.0 2010 (29 G89) @0C 2830 5 2(2 I(UFuboitlolf)))
unspecified
(assv 5 ’((2 3) (5 7) (11 13)))
= G
Rationale:  Although they are erdinarily—often used as predi-

procedure

Returns #t if obj is a symbol, otherwise returns #f.

(symbol? ’foo) = #t
(symbol? (car ’(a b))) = #t
(symbol? "bar") — #f
(symbol? ’nil) — #t
(symbol? > ()) = #f
(symbol? #f) — #f

procedure

R

(symbol->string symbol)

Returns the name of symbol

as a string.

an error to apply mutatlon procedures like strlng set!
to strings returned by this procedure.

v
S(&iid&ffl%&s&iﬁ—}ewer—e&%ef, T I e relwry

(symbol->string ’flying-fish)
=
=

"flying-fish"
(symbol->string ’Martin) " martin Martin "
(symbol->string

(string->symbol "Malvina"))

—> "Malvina"

(string->symbol string) procedure

Returns the symbol whose name is string. This proce-
dure can create symbols with names containing special
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characters
| ~ | #alarn 1 U£0007
M%%%WWW #\backspace . UH0008
when written. #\delete LUL007E.
T #\escape 2 U+001B
#\newline  ; the linefeed character, UT000A
#\null  the null character, U+0000
#\ssw&a i the return character, U+000D
. Sp the preferred way to write a space
( qu—mISSJSS@pi—mﬂs&ss&ppﬂ—é stnng—>sym§ol mI%%]%keS‘}‘fE_ﬂ? W@W
— ' mISSISST eq7’ bltBlt string->symbol
= #t
(eq? ’JollyWog Case is significant in #\(character), and in #\(character
(string->symbol name), but not in #—\x(hex scalar value). If (character)
(symbol->string ’JollyWog))) in #\(character) is alphabetic, then the character following
= #t (character) must be a delimiter character such as a space or
(string=? "K. Harper, M.D." parenthesis. This rule resolves the ambiguous case where,

(symbol->string
(string->symbol "K. Harper, M.D.")))
— #t

for example, the sequence of characters “#\space” could be
taken to be either a representation of the space character
or a representation of the character “#\s” followed by a
representation of the symbol “pace.”

Characters written in the #\ notation are self-evaluating.
That is, they do not have to be quoted in programs.

6.5.1. Characeters Some of the procedures that operate on characters ignore
the difference between upper case and lower case. The pro-

6.6. Characters cedures that ignore case have “-ci” (for “case insensitive”)
embedded in their names.

Characters are objects that represent printed char-
acters such as letters and digits. All _Scheme

implementations must support at least the ASCII character ~ Returns #t if obj is a character, otherwise returns #£.
repertoire: that is, Unicode characters U+0000 through

(char? obj) procedure

U-+007F. Implementations may support any other Unicode _
> (char=7 chari chary chars ...) procedure
characters they see fit, and may also support non-Unicode
! - (char<? chary chary chars ...) procedure
characters as well. Except as otherwise specified, the
: - (char>? chary chary chars ...) procedure
result of applying any of the following procedures to a _
- N - (char<=7? chari chary chars ...) procedure
non-Unicode character is implementation-dependent. _
(char>=7? chary chary chars ...) procedure

Characters  are  written  using the  notation TFheseprocedures-
#\{character) or #\{character name) AL These procedures return #t if the Unicode codepoints

#\x(hex scalar value). ; ) .
“< >~ corresponding to their arguments are (respectivel

Here are some examples: equal, monotonicall increasin, monotonicall
decreasing, monotonically nondecreasing, or monotonicall
#\a ; lower case letter These predicates are required to be transitive,
#\A ; upper case letter

) W 1mpose a total orderlng on the set of char-
#\ ( ; left parenthesis ;

acters —¥ —which
" + the space character &L@NMWMWWWM
#iota i(fsupported) true whether or not the implementation uses the Unicode
2038 A (f supported) representation internally.

The following character names must be supported by all




(char-ci=? chari chary chars ...)

char library procedure
(char-ci<? chari chary chars ...)

char library procedure
(char-ci>? chari chary chars ...)

char library procedure
(char-ci<=7? chari chary chars ...)

char library procedure
(char-ci>=? chary chary chars ...)

char library procedure

These procedures are similar to char=7 et cetera, but
they treat upper case and lower case letters as the same.
For example, (char-ci=7 #\A #\a) returns #t. Seme
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This procedure returns the numeric value (0 to 9) of its
argument if it is a numeric digit (that is, if char-numeric?
returns #t), or #f on any other character.

{digit-value #\3) =3
(digit-value #\x0664) == 4
(digit-value #\xOEA6) =0

procedure
procedure

(char->integer char)
(integer->char n)

Given a Unicode character, char->integer returns an ex-

act integer %%%MWMXD?FF
or between #xE000 and #x10FFFF which is equal to

he Unicode code oint of that character. Given a

non-Unicode character, it returns an exact integer greater

than #x10FFFF. This is true independent of whether the
implementation uses the Unicode representation internally.

Given an exact integer that is the image—of-a—~character

under-value returned by a character when char->integer
integer->char returns that char-

is_applied to_it,
acter Se—Ppr

Specifically, these procedures behave as if char-foldcase
were applied to their arguments before they were
compared.

(char-alphabetic? char)
(char-numeric? char)

(char-whitespace? char)
(char-upper-case? letter)
(char-lower-case? letter)

char library procedure
char library procedure
char library procedure
char library procedure
char library procedure

These procedures return #t if their arguments are al-
phabetic, numeric, whitespace, upper case, or lower
case characters,

respectively, otherwise they return #f.

Specifically, they must return #t when applied to
characters _with the Unicode properties Alphabetic,
Numeric

SUBSCRIPTNBDigit, White
SUBSCRIPTNBSpace, _ Uppercase, _ and _ Lowercase
respectively, and #f when applied to any other Unicode
characters. _Note that many Unicode characters are
alphabetic but neither upper nor lower case.

(digit-value char) char library procedure

{ehari=?)-and{i=) (char-upcase char)

char library procedure
char library procedure
char library procedure

(char-downcase char)
(char-foldcase char)
and—and—are—in—the—domain—of-The integerchar;—then
char-upcase procedure, given an argument that is the
lowercase _part _of a Unicode casing pair, returns the
uppercase member of the pair, provided that both
characters are supported by the Scheme implementation.
Note that language-sensitive casing pairs are not used. If
the argument is not the lowercase member of such a pair,

it is returned.

These—procedures—return—a—charaeter—sueh—that—The
{ehar-ei=?—Jchar-downcase —In—addition—if—is
alphabetie; then-the result-of procedure, given an argument
that is the uppercase part of a Unicode casing pair, returns
the lowercase member of the pair, provided that both
characters are supported by the Scheme implementation.
Note that language-sensitive casing pairs are not used. If
the argument is not the uppercase member of such a pair,

it is returned.

The _char-upcaseis—upper—case—and—theresult—of

char-downecasechar-foldcase is—lewer—easeprocedure
applies the Unicode simple case-folding algorithm



44 Revised” Scheme

to its_argument and returns the result. _ Note that
language-sensitive folding is not used. If the argument is
an_uppercase letter, the result will be either a lowercase
letter or the same as_the argument if the lowercase letter
does not exist or is not supported by the implementation.
See UAX #29 (part of the Unicode Standard) for details.

Note that many Unicode lowercase characters do not have
uppercase equivalents.

6.6.1. Strings
6.7. Strings

Strings are sequences of characters. Strings are writ-
ten as sequences of characters enclosed Wlthln double—
quotes (").
WWMM&%W
sequences represent characters other than themselves.
Escape sequences always start with a backslash (\)-asn:

e \a : alarm, U+0007

AAARRARARAARAAAAAA

e \b : backspace, U+0008

e \t : character tabulation, U+0009_
* \n: linefeed, U3-0004

* \r:_return, U+000D_

e \" : doublequote, U+0022
e \\ :backslash, U+005C_

e \(intraline whitespace)(line ending)
(intraline whitespace) : nothing

e \x(hex scalar value); : specified character (note the

The result is unspecified if any other character in a strin

occurs after a backslash.

Except for aline ending, any character outside of an escape
sequence stands for itself in the string literal. A line ending
which is preceded by \(intraline whitespace) expands to
nothing (along with any trailing intraline whitespace), and
can be used to indent strings for improved legibility. Any
other line ending has the same effect as inserting a \n

Examples:

"The word \"recursion\" has many meanings."

"Another example:\ntwo lines of text""Here’s a text Kb is an error if k& is not a valid index of string.
is named GREEK §

containing just one line”"\x03B1;

The length of a string is the number of characters that it
contains. This number is an exact, non-negative integer
that is fixed when the string is created. The valid indexes
of a string are the exact non-negative integers less than
the length of the string. The first character of a string has
index 0, the second has index 1, and so on.

In phrases such as “the characters of string beginning with
index start and ending with index end,” it is understood
that the index start is inclusive and the index end is ex-
clusive. Thus if start and end are the same index, a null
substring is referred to, and if start is zero and end is the
length of string, then the entire string is referred to. It is
an error if start is less than end.

Some of the procedures that operate on strings ignore the
difference between upper and lower case. The versions that
ignore case have “-ci” (for “case insensitive”) embedded

in their names.

Implementations may forbid certain characters from
might support the entire Unicode repertoire, but only allow
strings. It is an error to pass such a forbidden character to

(string? obj) procedure

Returns #t if obj is a string, otherwise returns #f£.

(make-string k)
(make-string k char)

procedure
procedure

The Meke-stringmake-string procedure returns a newly
allocated string of length k. If char is given, then all

elements-the characters of the string are initialized to char,
otherwise the contents of the string are unspecified.

(string char ...) procedure

Returns a newly allocated string composed of the argu-
ments. It is analogous to list.

(string-length string) procedure

Returns the number of characters in the given string.

procedure

The
procedure returns character k of

(string-ref string k)

‘ref



string using zero-origin indexing. There is no requirement
for this procedure to execute in constant time.

(string-set! string k char) procedure

It is an error if k is not a valid index of string. The
String-setstring-set! procedure stores char in element

k of string and returns an unspecified value. There is no
requirement for this procedure to execute in constant time.

(define (f) (make-string 3 #\*))

(define (g) "x*x")

(string-set! (f) 0 #\7) = unspecified
(string-set! (g) 0 #\7) = error
(string-set! (symbol->string ’immutable)

0
#\7) — error
(string=7 chary chary chars ...) procedure

Returns #t if the-two-all the strings are the same length and
contain exactly the same characters in the same positions,
otherwise returns #f.

(string-ci=? chary chary chars ...)
char library procedure

Returns #t if, after case-folding, all the strings are the
same length and contain the same characters in the
same_positions, otherwise returns #f. Specifically, these
procedures behave as if String-—eistring-foldcase were
applied to their arguments before comparing them.

(string-ni=? chary chare chars ...) procedure

Returns __#t  if, _ after _an _implementation-defined
and contain the same characters in the same positions,
otherwise returns #£. The intent is to provide a means of
comparing strings that are considered equivalent in some

situations but are represented by a different sequence of
characters.

Specifically, an_implementation which supports Unicode
should use Unicode normalization NFC or NFD as specified
by Unicode TR#15. Implementations which only support
ASCII or_some other character set which provides no
ambiguous_representations of character sequences may
define _the normalization to_be the identity operation,
in which case string-ni=? treats—upper-andJlower—ease
equivalent to string=7treats—upper—and—Jower—ease—as

(string<? string; strings strings ...) procedure

(string-ci<? string; strings strings ...)
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char library procedure

(string-ni<? string; strings strings ...)

char library procedure
(string>? string; strings strings ...) procedure
(string-ci>? string; strings strings ...)

char library procedure
(string-ni>? string; strings strings ...)

char library procedure
(string<=7 string; strings strings ...) procedure
(string-ci<=7 string; strings strings ...)

char library procedure
(string-ni<=7? string; strings strings ...)

char library procedure
(string>=? string; strings strings ...) procedure
(string-ci>=?7 string; strings strings ...)

char library procedure
(string-ni>=? string; strings strings ...)

char library procedure

These procedures are—return #t if their arguments
are (respectivel equal, monotonically increasin,

monotonically decreasing, monotonically nondecreasing, or
monotonically nonincreasing.

These predicates are required to be transitive.

These rocedures compare strings in an
implementation-defined way. One approach is to make

them the lexicographic extensions to strings of the cor-
responding orderings on characters. Fer—exampleln that
case, string<? is-would be the lexicographic ordering on
strings induced by the ordering char<? on characters—H
. and if the two strings differ in length but are the same

up to the length of the shorter string, the shorter string
is—would be considered to be lexicographically less than

the longer string. However, it is also permitted to use the
natural ordering imposed by the internal representation of
strings, or a more complex locale-specific ordering.

~In all cases,

Mmmsmnm
string=7and-, and string-cistring>?, and must satisfy
string<=7 procedures-to-take-more-thantwo-argtiments—
as-—with-the-eorrespondingnumerieal-predieatesif and only
if they do not satisfy string>? and string>=7 if and only
if they do not satisfy string<?.

The “-ci” procedures behave as if they applied
string-foldcase to their arguments before invoking the

Cbl

corresponding procedures without “-ci

The “-ni” procedures behave as if they applied
the implementation-defined normalization used b
string-ni=? to their arguments before invoking the

”

corresponding procedures without “-ni”.

char library procedure
char library procedure
char library procedure

(string-upcase string)
(string-downcase string)
(string-foldcase string)



46 Revised” Scheme

These _procedures apply the Unicode full _string
uppercasing, lowercasing, and case-folding algorithms
to their arguments and return the result, If the result
is_equal to_the argument, a new string need not be
allocated. _ Note that language-sensitive mappings and
foldings are not used. The result may differ in length
case-mappings that depend on the surrounding context.
For example, Greek capital sigma normally lowercases to
Greek small sigma. but at the end of a word it downcases
to Greek small final sigma instead. See UAX #29 (part of
the Unicode Standard) for details.

(substring string start end) procedure

It is an error if start and end are not exact integers satis-
fying the inequality

0 < start < end < (string-length string).

The Substringsubstring procedure returns a newly allo-
cated string formed from the characters of string beginning

with index start (inclusive) and ending with index end (ex-
clusive).

(string-append string ...) procedure

Returns a newly allocated string whose characters form-are
the concatenation of the characters in the given strings.

procedure
procedure

(string->list string)
(1ist->string list)

Stringstring->list returns a newly allocated list of the
characters that make up the given string. EListlist->

string returns a newly allocated string formed from the
eharacters-elements in the list list;—whieh-must-be-alist-of

characters. It is an error if any element is not a character.
Stringstring->list and list->string are inverses so

far as equal? is concerned.

(string-copy string) procedure

Returns a newly allocated copy of the given string.

procedure
procedure

(string-fill! string char)
(string-fill! string char start end)

Stores-in—every-element-of the-givenIf start and end are
given, string-fill! stores fill in all the elements nts of in all the elements of string

between start (inclusive) and end (exclusive). It is an error

M\ﬁll is not a character or is forbidden in strings, or if start
is less than end. If start and returns-an—unspeeified—values
endy are omitted, fill is stored in all the elements of string.

In either case, an unspecified value is returned.

6.7.1. Veetors

6.8. Vectors

Vectors are heterogenous structures whose elements are in-
dexed by integers. A vector typically occupies less space
than a list of the same length, and the average time
reguired-needed to access a randomly chosen element is
typically less for the vector than for the list.

The length of a vector is the number of elements that it
contains. This number is a non-negative integer that is
fixed when the vector is created. The wvalid indezes of a
vector are the exact non-negative integers less than the
length of the vector. The first element in a vector is indexed
by zero, and the last element is indexed by one less than
the length of the vector.

Vectors are written using the notation #(obj ...). For
example, a vector of length 3 containing the number zero
in element 0, the list (2 2 2 2) in element 1, and the
string "Anna" in element 2 can be written as following:

#(0 (2 2 2 2) "Anna")

Note that this is the external representatlon of a vector, not
an expression evaluating to a vector. 3t

vector-constantsmust-be-quotedlt is an error not to uote

a vector constant:

*#(0 (2 2 2 2) "Anna")
— #(0 (2 2 2 2) "Anna")

(vector? obj) procedure

Returns #t if obj is a vector;; otherwise returns #£.

procedure
procedure

(make-vector k)
(make-vector k fill)

Returns a newly allocated vector of £ elements. If a second
argument is given, then each element is initialized to fill.
Otherwise the initial contents of each element is unspeci-
fied.

(vector obj ...) procedure

Returns a newly allocated vector whose elements contain
the given arguments. Analogeus-It is analogous to list.

(vector ’a ’b ’c) — #(a b c)

(vector-length wvector) procedure

Returns the number of elements in vector as an exact in-
teger.

(vector-ref wvector k) procedure

It is an error if k£ is not a valid index of wector.
Veetor-refvector-ref returns the contents of element £
of vector.



(vector-ref '#(1 1 2 3 5 8 13 21)

5)
— 8
(vector-ref ’#(1 1 2 3 5 8 13 21)
( et inexact->exact
— 13

(vector-set! wector k obj) procedure

It is an error if k is not a valid index of wvector.
Vector-setvector-set! stores obj in element £ of vector.
The value returned by vector-set! is unspecified.

(let ((vec (vector 0 (2 2 2 2) "Anna")))
(vector-set! vec 1 ’("Sue" "Sue"))
vec)
—> #(0 ("Sue" "Sue") "Anna")

'#(0 1 2) 1 "doe")
error ; constant vector

(vector-set!
=

procedure
procedure

(vector->list wvector)
(list->vector list)

Veetor-vector->list returns a newly allocated list
of the objects contained in the elements of wvector.
Eist-list->vector returns a newly created vector initial-
ized to the elements of the list list.

(vector->list ’#(dah dah didah))
—> (dah dah didah)

(list->vector ’(dididit dah))
— #(dididit dah)

procedure
procedure

(vector->string string)
(string->vector wector)

Steres—in—every—element—of—vector->string returns a
newly allocated_string _of the objects_contained in_the
elements of vector. It is an error if any element is not
a character allowed in strings. string->vector returns
a newly created vector initialized to the elements of the
string string.

(string->vector "ABC") = #(#\A #\B #\C)
(vector->string
#(\L #\2 #\3) — "123"

(vector-copy wector) procedure
(vector-copy wector start) procedure
(vector-copy wector start end) procedure
(vector-copy wvector start end fill) procedure

Returns a newly allocated copy of the given vector. The
value returned-by-clements of the new vector are the same

in the sense of eqv?) as the elements of the old.
The arguments start, end, and fill default to 0, the

ARAAARAARRARAARARK

length of wector, and an implementation-specified value
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respectively. If end is greater than the length of vector,

the fill argument is used to fill the additional elements of
the result.

( round (* 2 (acos -1)))))
(vector-fill! wector fill)

(vector-fill! wector fill start end)

If start and end are given, vector-fill! stores fill (which
can be any object) in all the elements of vector between
start (inclusive) and end (exclusive). It is an error if start
is less than end. If they are omitted, fill is stored in all the

elements of vector. In either case, an unspecified value is

returned.

procedure
procedure

6.9. Bytevectors

Bytevectors represent blocks of binary data. They are
fixed-length sequences of bytes, where a byte is an exact

integer in the range [0, 255]. A bytevector is typically more
space-efficient than a vector containing the same values.

The length of a bytevector is the number of elements that
it contains. This number is a non-negative integer that is
fixed when the bytevector is created. The valid indexes of
a bytevector are the exact non-negative integers less than
the length of the bytevector. starting at index zero as with

vectors.

(bytevector? obj) procedure

Returns #t if obj is a bytevector. Otherwise, #£ is returned.

procedure
procedure

(make-bytevector k)
(make-bytevector k byte)

make-bytevector returns a newly allocated bytevector
of length k. If byte is_given, then all clements of the
bytevector are initialized to byte, otherwise the contents
of each element are unspecified.

(bytevector-length bytevector) procedure

Returns the length of bytevector in bytes as an exact
integer.

(bytevector-u8-ref bytevector k) procedure
Returns the kth byte of bytevector.
(bytevector-u8-set! bytevector k byte) procedure

Stores byte as the kth byte of bytevector. The value

returned by bytevector-u8-set! is unspecified.

(bytevector-copy bytevector) procedure

G (5 2 4) Cine:
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Returns a newly allocated bytevector containing the same
bytes as bytevector.

(bytevector-copy! from to)

Copies the bytes of bytevector from to bytevector to. It is
an error if to is shorter than from. The value returned b
bytevector-copy! is unspecified.

procedure

(bytevector-copy-partial bytevector start end)
procedure

Returns a newly allocated bytevector containing the bytes
in bytevector hetween start (inclusive) and end (exclusive).

(bytevector-copy-partial! from start end to at)
procedure

Copies the bytes of bytevector from between start and end
to bytevector to. starting at af. The order in which bytes
are copied is unspecified, except _that if the source and
destination overlap, copying takes place as if the source
Is first copied into a temporary bytevector and then into
the destination. This can be achieved without allocating
storage by making sure to copy in the correct direction in

such circumstances.

It is an error if the inequalit

(>= (- (bytevector-length to) at) (- end start)) is
false. The value returned by bytevector-copy-partial!
Is unspecified.

(utf8->string bytevector)
(string->utf8 string)

procedure
procedure

These _procedures tramslate between  strings _and
bytevectors that encode those strings using the UTF-8
encoding. __ The utf8->string procedure decodes a
bytevector and returns_the corresponding string; the
string->utf8 procedure encodes a string and returns the
corresponding bytevector. It is an error to pass invalid
byte sequences or byte sequences representing characters
which are forbidden in strings to utf8->string.

(utf8->string #u8(#x41)) ~ == 'A’
(string->utf8 "A") — #u8(#xCE #xBB)

6.10. Control features

This chapter describes various primitive procedures which
control the flow of program execution in special ways. The
procedure? predicate is also described here.

(procedure? obj) procedure

Returns #t if 0bj is a procedure, otherwise returns #f.

(procedure? car) — #t
(procedure? ’car) = #f
(procedure? (lambda (x) (* x x)))

== #t
(procedure? ’(lambda (x) (* x x)))

— #f
(call-with-current-continuation procedure?)

— #t

(apply proc arg: ... args) procedure

Galls-apply calls proc with the elements of the list (append

(list arg; ...) args) as the actual arguments.
(apply + (list 3 4)) == 7
(define compose

(lambda (f g)
(lambda args
(f (apply g args)))))
((compose sqrt *) 12 75) = 30

(map proc list; listy ...) procedure

It is an error if proc does not accept as many arguments
as there are lists and return a single value. If more than
one list is given and not all lists have the same length,
map terminates when the shortest list runs out. Mapmap
applies proc element-wise to the elements of the lists and
returns a list of the results, in order. It is an error for proc

to mutate any of the lists. The dynamic order in which
proc is applied to the elements of the lists is unspecified.

If multiple returns occur from map, the values returned b

earlier returns are not mutated. _

(map cadr ’((a b) (d e) (g h)))
= (b e h)

(map (lambda (n) (expt n n))
(123 45))
= (1 4 27 256 3125)
(map + °(123) (456 7)== (679
(let ((count 0))

(map (lambda (ignored)
(set! count (+ count 1))

count)
’(a b)) = (1 2)or (21)
(string-map proc string; strings ...) procedure

TFhe—areuments—to-It is an error if proc does not accept

as many arguments as there are strings and return a sin-
gle character. If more than one string is given and not
all strings have the same length, string-map terminates
when the shortest string runs out. fer-eachstring-map



s-applies

proc
m&p—%e&e&eh&%gumﬁ}%eeekée—e&}kefkewlg@\gmm the
elements of the s—nerderfromthefirst-element{sitothe
last-and-the-valuereturned-by-strings and returns a string
of the results, in order. The dynamic order in which proc
is_applied to_the elements of the strings is unspecified.

unspeeified, the values returned by earlier returns are not
mutated.
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» but fereefor-each

to~calls_proc for its side effects rather than for its values.

Unlike map, for-each is guaranteed to call proc on the
elements of the lists in order from the first element(s) to the

last, and the value returned by for-each is unspecified. It
( Tet—LvLmake-vector—5) string-ma Char_f"ldcaswv"vjwi/vg oc to mutate any of the lists. If more than

—> "abdegh"

one list is given and not all lists have the same meaning-as

. . H-length, for-each terminates when the
(string-map (lambda (c) ( foer—each— integer->char ,(+ t(lic ar->int DA

— 'IBM

- "StUdLyCaPs"
(vector-map proc wvector; vectors ...) procedure

previoushy—eomputed—value—isreturned—It is an error if
proc does not accept as many arguments as there are vec-
tors and return a single value. If more than one vector is
given and not all vectors have the same length, vector-map
terminates when the shortest vector runs out. vector-map
applies proc element-wise to_the elements of the vectors
and returns a vector of the results, in order. The dynamic
order in which proc is applied to the elements of the vectors
is unspecified. If multiple returns occur from vector-map,
the values returned by earlier returns are not mutated.

( make-promise(lambda— let ((v (make-vector 5) ) }—
(string-map ( lambda ( H—%&W&@ﬂ%ﬁ%@ﬁ%ﬁ%ﬁw i

c k)

( {delayexpression){make—promise (tambda—)expression)——

5 (01 234> #0149 16)

where

(string-for-each proc string; strings ...) procedure

The arguments to make-premisestring-for-each is
defined-asfelows:—are like the arguments to string-ma
but string-for-each calls proc for its side effects rather

than for its values. Unlike string-map, string-for-each
is_guaranteed to call proc on the elements of the lists in

order from the first element(s) to the last, and the value
returned by string-for-each is unspecified. If more than
one string is given and not all strings have the same length,

—> #(1 4 27 256 3125)

(vector-map + *#(1 2 3) #4856 7))
= #(579)

(vector-for-each proc vector; wectors ..

.) procedure

The ar umentb to make—pfemﬁemv\f/m —

(for-each proc listy listy ...) procedure

The arguments to delayfor-each and—are like the
WMM—%W%%@%

Galling—calls_proc for its side effects rather than for its

values. Unlike %W@bjeet—%h&t—is—ﬁﬁ%—&
pf@fm&&mﬁmp%yf%u%ﬂ%h&@bjeﬁ‘w
is guaranteed to call proc on the elements of the vectors in

order from the first element(s) to the last, and the Value

014916

s %ﬁiﬁ—ﬂet—be—eeﬂs

+ count 1))
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returned by vector-for-each is unspecified. If more than

one vector is_given and not all vectors have the same
length, vector-for-each terminates when the shortest

vector runs out.

procedure
procedure

(call-with-current-continuation proc)
(call/cc proc)

It is an error if proc does not accept one argument. The
procedure call-with-current-continuation packages
#p—(or its equivalent abbreviation call/cc) packages the
current continuation (see the rationale below) as an “es-
cape procedure” and passes it as an argument to proc. The
escape procedure is a Scheme procedure that, if it is later
called, will abandon whatever continuation is in effect at
that later time and will instead use the continuation that
was in effect when the escape procedure was created. Call-
ing the escape procedure may cause the invocation of before
and after thunks installed using dynamic-wind.

The escape procedure accepts the same number of ar-
guments as the continuation to the original call to
call-with-current-continuation. Except for con-
tinuations created by the call-with-values procedure

including the initialization expressions of let-values and
let*-values expressions), all continuations take exactly

one value. The effect of passing no value or more
than one value to continuations that were not created by
call-with-values is unspecified.

within_a_sequence of expressions, such as in lambda,
case-lambda, begin, let, let*, letrec, letreck,
let-values, let*-values, let-syntax, letrec-syntax,
parameterize, guard, case, cond. when. and unless
expressions, take an arbitrary number of values, because
they discard the values passed to them in any event.

The escape procedure that is passed to proc has unlimited
extent just like any other procedure in Scheme. It may—can
be stored in variables or data structures and may—can be
called as many times as desired.

The following examples show only the
most——eommon——simplest  ways in which
call-with-current-continuation is used. If all
real uses were as simple as these examples, there

would be no need for a procedure with the power of
call-with-current-continuation.

(call-with-current-continuation
(lambda (exit)
(for-each (lambda (x)
(if (negative? x)

(exit x)))
’(64 0 37 -3 245 19))
#t)) = -3

(define list-length
(lambda (obj)

a with-current-continuation
(lambda (return) . o
b1 4V )

(cond ((null? obj) 0)
((pair? obj)

(+ (r (cdr obj)) 1))

(else (return #£))))))

etrec
AA)) #

(r obj)))))

(list-length (1 2 3 4)) = 4

(list-length ’(a b . c)) = #f

Rationale:

A common use of call-with-current-continuation is for
structured, non-local exits from loops or procedure bodies, but
in fact call-with-current-continuation is extremely—useful
for implementing a wide variety of advanced control structures.

Whenever a Scheme expression is evaluated there is a contin-
uation wanting the result of the expression. The continuation
represents an entire (default) future for the computation.
If the expression is evaluated at top level, for example,
then the continuation might take the result, print it on the
screen, prompt for the next input, evaluate it, and so on
forever. Most of the time the continuation includes actions
specified by user code, as in a continuation that will take
the result, multiply it by the value stored in a local variable,
add seven, and give the answer to the top level continuation
to be printed. Normally these ubiquitous continuations are
hidden behind the scenes and programmers do not think
much about them. On rare occasions, however, a programmer
may—need-—needs to deal with continuations explicitly. The
Call-with-current—continuationcall-with-current-continuation
procedure allows Scheme programmers to do that by creating
a procedure that acts just like the current continuation.

Most programming languages incorporate one or more special-
purpose escape constructs with names like exit, return, or
In 1965, however, Peter Landin [2I] invented a
general purpose escape operator called the J-operator. John
Reynolds [30] described a simpler but equally powerful con-

struct in 1972. The catch speeialform—syntax described by
Sussman and Steele in the 1975 report on Scheme is exactly

even goto.

the same as Reynolds’s construct, though its name came from
a less general construct in MacLisp. Several Scheme implemen-
tors noticed that the full power of the-catch eenstruet-could be
provided by a procedure instead of by a special syntactic con-
struct, and the name call-with-current-continuation was



coined in 1982. This name is descriptive, but opinions differ on
the merits of such a long name, and some people use-prefer the
name call/cc instead.

(values obj ...) procedure

Delivers all of its arguments to its continuation. Exeeptfor

%ak&eae&eﬂfy?eﬁe—Vﬂiﬁe.;Values ﬁlight be defined as fol-

lows:

(define (values . things)
(call-with-current-continuation
(lambda (cont) (apply cont things))))

(call-with-values producer consumer) procedure

Calls its producer argument with no values and a contin-
uation that, when passed some values, calls the consumer
procedure with those values as arguments. The continua-
tion for the call to consumer is the continuation of the call
to call-with-values.

(call-with-values (lambda () (values 4 5))
(lambda (a b) b))
—> b

(call-with-values * -) — -1

(dynamic-wind before thunk after) procedure

Calls thunk without arguments, returning the result(s) of
this call. Before and after are called, also without argu-
ments, as required by the following rules{rnete-that. Note
that, in the absence of calls to continuations captured using
call-with-current-continuation, the three arguments
are called once each, in order}. Before is called when-
ever execution enters the dynamic extent of the call to
thunk and after is called whenever it exits that dynamic
extent. The dynamic extent of a procedure call is the pe-
riod between when the call is initiated and when it returns.

Before and after are excluded from the dynamic extent. In
Scheme, because of call-with-current-continuation,

the dynamic extent of a call may—net-be-is not always a
single, connected time period. It is defined as follows:

e The dynamic extent is entered when execution of the
body of the called procedure begins.

e The dynamic extent is also entered when exe-
cution is not within the dynamic extent and a
continuation is invoked that was captured (using
call-with-current-continuation) during the dy-
namic extent.

e It is exited when the called procedure returns.
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e It is also exited when execution is within the dynamic
extent and a continuation is invoked that was captured
while not within the dynamic extent.

If a second call to dynamic-wind occurs within the dynamic
extent of the call to thunk and then a continuation is in-
voked in such a way that the afters from these two invoca-
tions of dynamic-wind are both to be called, then the after
associated with the second (inner) call to dynamic-wind is
called first.

If a second call to dynamic-wind occurs within the dy-
namic extent of the call to thunk and then a continua-
tion is invoked in such a way that the befores from these
two invocations of dynamic-wind are both to be called,
then the before associated with the first (outer) call to
dynamic-wind is called first.

If invoking a continuation requires calling the before from
one call to dynamic-wind and the after from another, then
the after is called first.

The effect of using a captured continuation to enter or
exit the dynamic extent of a call to before or after is
undefinedunspecified.

(let ((path ’())
(c #£))
(let ((add (lambda (s)
(set! path (cons s path)))))
(dynamic-wind
(lambda () (add ’connect))
(lambda ()
(add (call-with-current-continuation
(lambda (c0)
(set! ¢ c0)
’talk1))))
(lambda () (add ’disconnect)))
(if (< (length path) 4)
(c ’talk2)
(reverse path))))

— (connect talkl disconnect
connect talk2 disconnect)

6.11. Exceptions

This section describes Scheme’s exception-handling_and
exception-raising procedures. For the concept of Scheme
syntax.

Ezception handlers_are_one-argument procedures that
determine _the action the program takes when an
exceptional situation is signalled. The system implicitly
maintains a current exception handler.

The program raises an exception by invoking the current
exception handler assing it an object encapsulatin
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information about the exception. Any procedure acceptin
one argument may serve as an exception handler and an
object may be used to represent an exception.

(with-exception-handler handler thunk)  procedure

It is an error if handler does not accept one argument. It is
also an error if thunk does not accept zero arguments. The

with-exception-handler procedure returns the results
of invoking thunk. _Handler is_installed as the current

exception handler for the dynamic extent (as determined
by dynamic-wind) of the invocation of thunk._

(raise obj) procedure

Raises an exception by invoking the current exception
handler on obj,

. The handler is called with a continuation
whose dynamic extent is that of the call to raise, except
that the current exception handler is the one that was in
place when the handler being called was installed. If the

handler returns, an exception is raised in the same dynamic
extent as the handler.

procedure

Raises an exception by invoking the current exception
handler on obj,

. The handler is called with a continuation
to raise-continuable, except that: the current
exception handler is the one that was_in_ place when
the handler being called was installed, and (2) if the
handler_being called returns, then it will again become
the current exception handler. If the handler returns, the
values it returns become the values returned by the call to

raiseccontinuable.

(raise-continuable o0bj)

(with-exception-handler (lambda6bcon) (cond ((string? con) (display con)) (display "a 1

(error message obj ...) procedure

Message should be a string. Raises an _exception as if by
calling raise on a newly allocated implementation-defined
object_which_encapsulates the information provided by
message, as well as any objs, known as the irritants. The

rocedure error-object? must return #t on such objects.

(define (null-list? 1) (cond ((pair? 1) #f)

procedure

Returns #t if obj is an object created by error or one of

an implementation-defined set of objects, otherwise returns
#£f.

A~

(error-object? obj)

(error-object-message error-object) procedure

Returns the message encapsulated by error-object.

(error-object-irritants error-object) procedure

Returns a list of the irritants encapsulated by error-object.

6.12. Eval

(eval expression environment-specifier)
eval library procedure

Evaluates expression in the specified environment and re-
turns its value. must—be-It is an error if expression is
not a valid Scheme expression represented as data—and
deseribed—belowa_datum. Implementations may extend
eval to allow non-expression programs {definitiens—-such
as_definitions as the first argumentand—to—allow—other
v&k&eb—as—eﬁwemﬁeﬂﬁs with the restriction that eval
is not allowed to create new bindings in the environ-
ments assoetated—with-returned by null-environment or

scheme-report-environment.

(eval ’(* 7 3) (scheme-report-environment & 7 ))
= 21

(let ((f (eval ’(lambda (f x) (f x x))
(null-environment 5 7 ))))
(f + 10))
= 20

(scheme-report-environment version)
eval hbrar{ procedure

revision of the Scheme
Scheme)———

2

7, corresponding to this
report (the Revised” Report on

Scheme-report-environmentscheme-report-environment
returns a specifier for an environment that is—empty

the other hbrarles of thls report that &re»efﬁher—fequﬂed»ef
be%hﬂapﬁeﬁa}ﬂmd—s&ppeﬁed—by—%heﬂﬂ}p}emeﬁ%&ﬁefkthe

implementation supports. Implementations must support

Q%heklm lementations ma; also support other Values of

n''null-list?



they should return an environment containing bindings
corresponding to the corresponding version of the report.
If version is neither 7 nor another value supported by the
implementation, an error is signalled.

The effect of assigning (through the use of eval) a vari-
able bound in a scheme-report-environment (for exam-
ple car) is unspecified. Thus the environments specified
by scheme-report-environment may be immutable.

(null-environment wversion) eval library procedure

The null-environment procedure returns a specifier for
an_environment that_contains only the bindings for all
syntactic keywords defined either in_the base library or
in_the other libraries of this report, provided that the

(environment list; ...) eval library procedure

This procedure returns a specifier for the environment that

eontains—results by starting with an empty environment
and then importing each list, considered as an import

set, into it. (See section for a description of import

sets.) The bindings of the environment represented by the
specifier are immutable.

(interaction-environment) repl library procedure

This procedure returns a specifier for an environment that
contains an implementation-defined set of bindings, typi-

cally a superset of those listed-in—the—reportexported by
(scheme base). The intent is that this procedure will re-
turn the environment in which the implementation would

evaluate expressions dynamieallytyped-entered by the user
into a REPL.

6.13. Input and output

6.13.1. Ports

Ports represent input and output devices. To Scheme,
an input port is a Scheme object that can deliver
eharacters—data _upon command, while an output port
is a Scheme object that can accept echaractersdata.

Whether the input and output port types are disjoint is
implementation-dependent.

Different port types operate on different data. Scheme
implementations are required to support textual ports and
binary ports, but may also provide other port types.

A textual port supports reading or writing of individual

characters from or to a backing store containing characters
using read-char and write-char below, as well as

ARNAAAARRAARARITAARK

operations defined in terms of characters such as read and

vrite.
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‘ A _binary port_supports
@MM
store_containing bytes using read-u8 and write-ug
below. _as_well as operations defined in_ terms of bytes.
Whether the textual and binary port types are disjoint is
implementation-dependent.

Ports_can be used to access files, devices, and similar

things on the host system on which the Scheme program

(call-with-input-file string proc)

file library procedure
(call-with-output-file string proc)

file library procedure

It is an error if proc s
not accept _one argument.

For call w1th 1nput flle
the file named by string should already exist; for
call-with-output-file, the effect is unspecified if the
file already exists. These procedures call proc with one ar-
gument: the textual port obtained by opening the named

file for input or output as if by open-input-file or

open-output-file. If the file cannot be opened, an er-
ror is signalled. If proc returns, then the port is closed
automatically and the value{s)-values yielded by the proc
istare~-arc returned. If proc does not return, then the port
will-must not be closed automatically unless it is possible
to prove that the port will never again be used for a read
or write operation.

Rationale: Because Scheme’s escape procedures have un-
limited extent, it is possible to escape from the current con-
tinuation but later to escape back in. If implementations
were permitted to close the port on any escape from the
current continuation, then it would be impossible to write
portable code using both call-with-current-continuation

and call-with-input-file or call-with-output-file.

(call-with-port port proc) procedure

ReturnsIt is an error if proc does not accept one argument.

The call-with-port procedure calls proc with port as an
argument. If proc returns, port is closed automatically and
the values returned by proc are returned.

(input-port? obj) procedure
(output-port? obj) procedure
(textual-port? obj) procedure
(binary-port? obj) procedure
(port? obj) procedure

MW%#'C 1f ob] is an input porter
MMWWM
Otherwise they return #£.
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procedure

Returns #t if port is still open and capable of performin
input or output, and #f otherwise.

(port-open? port)

(current-input-port) procedure
(current-output-port) procedure
(current-error-port) procedure

Returns the current default input er-eutput—pert—port,

output port, or error port (an output port), respectively.
These rocedures are arameter ob'ects Which can be

initial bindings for these are system-defined textual orts.

(with-input-from-file string thunk)

file library procedure
(with-output-to-file string thunk)

file library procedure

of no-arguments—lt is an error if thunk does not accept
zero arguments.  For with-input-from-file, the—file

should—it_is an error if the file named by string does
not already exist; for with-output-to-file, the effect is

unspecified if the file already exists. The file is opened

for input or output —an—input—er-oeutput—pert—econneected

to—it—as_if by open-input-file or open-output-file,
and the new port is made the default value returned

by current-input-port or current-output-port (and
is used by (read), (write o0bj), and so forth);—and—the
._The thunk is then called with no arguments. When the
thunk returns, the port is closed and the previous default is

restored. With-input-frem—filewith-input-from-file

and with-output-to-file return {s}—the—value{s)
the values yielded by thunk. If an escape pro-

cedure is used to escape from the continuation of
these procedures, their behavior is implementation
dependentimplementation-dependent.

(open-input-file string) file library procedure
(open-binary-input-file string) file library procedure

Takes a string-naming-string for an existing file and returns
an—input-port-a textual input port or binary input port
capable of delivering eharaecters-data from the file. If the
file cannot be opened, an error is signalled.

(open-output-file string) file library procedure
(open-binary-output-file string)

file library procedure

Takes a string-string naming an output file to be created

and returns an-eutput-peort-a textual output port or binar
output port capable of writing eharaeters—data to a new

file by that name. If the file cannot be opened, an error is
signalled. If a file with the given name already exists, the
effect is unspecified.

(close-port port) procedure
(close-input-port port) procedure
(close-output-port port) procedure

Closes the file-resource associated with port, rendering
the port incapable of delivering or accepting eharaeters:

data. Tt is an error to apply the last two procedures to a
port which is not an input_or output port, respectively.
Scheme_implementations may provide ports which are
simultaneously input and output ports, such as sockets; the
closezinput-port and close-output-port procedures
can_then be used to close the input and output sides of
the port independently.

These routines have no effect if the file has already been
closed. The value returned is unspecified.

(open-input-string string) procedure

Takes a string and returns a textual input port that delivers
characters from the string.

(open-output-string) procedure

Returns a textual output port that will accumulate
characters for retrieval by get-output—-string.

(get-output-string port) procedure

It is an error if port was mnot created with
open-output-string.  Returns a string consisting of
the characters that have been output to the port so far in
the order they were output.

(open-input-bytevector bytevector) procedure

Takes a bytevector and returns a binary input port that
delivers bytes from the bytevector.

(open-output-bytevector) procedure

Returns a binary output port that will accumulate bytes
for retrieval by get-output-bytevector.

(get-output-bytevector port) procedure

It is an error if port was mnot created with

open-output-bytevector. Returns _a__bytevector
consisting of the bytes that have been output to the
ort so far in the order they were output.



6.13.2. Input

(read)
(read port)

read library procedure
read library procedure

Readread converts external representations of Scheme ob-
jects into the objects themselves. That is, it is a parser
for the nonterminal (datum) (see sections and [6.4).
Readread returns the next object parsable from the given
textual input port, updating port to point to the first char-
acter past the end of the external representation of the
object.

If an end of file is encountered in the input before any char-
acters are found that can begin an object, then an end of
file object is returned. The port remains open, and further
attempts to read will also return an end of file object. If an
end of file is encountered after the beginning of an object’s
external representation, but the external representation is
incomplete and therefore not parsable, an error is signalled.

The-argument—Port may be omitted, in which case it de-
faults to the value returned by current-input-port. It is
an error to read from a closed port.

(read-char)
(read-char port)

procedure
procedure

Returns the next character available from the textual input
port, updating the port to point to the following character.
If no more characters are available, an end of file object is
returned. Port may be omitted, in which case it defaults
to the value returned by current-input-port.

(peek-char)
(peek-char port)

procedure
procedure

Returns the next character available from the textual input
port, without updating the port to point to the following
character. If no more characters are available, an end of
file object is returned. Port may be omitted, in which case
it defaults to the value returned by current-input-port.

Note: The value returned by a call to peek-char is the same as
the value that would have been returned by a call to read-char
with the same port. The only difference is that the very next call
to read-char or peek-char on that port will return the value
returned by the preceding call to peek-char. In particular, a
call to peek-char on an interactive port will hang waiting for
input whenever a call to read-char would have hung.

procedure
procedure

(read-line)
(read-line port)

Returns the next line of text available from the textual

input port, updating the port to point to the followin
character. If an end of line is read, a string containin
all of the text up to (but not including) the end of line
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is_returned, and the port is updated to _point just past
the end of line. If an _end of file is encountered before
any end of line is read. but some characters have been
read, a string containing those characters is returned. If
an_end of file is_encountered before any characters are
read, an end-of-file object is returned. For the purpose of
this procedure; an end of line consists of either a linefeed
character, a carriage return character, or a sequence of a
carriage return character followed by a linefeed character.
Port may be omitted, in which case it defaults to the value
returned by current-input-port.

(eof-object? obj) procedure

Returns #t if obj is an end of file object, otherwise returns
#f. The precise set of end of file objects will vary among
implementations, but in any case no end of file object will
ever be an object that can be read in using read.

procedure
procedure

(char-ready?)
(char-ready? port)

Returns #t if a character is ready on the textual in-
put port and returns #f otherwise. If char-ready re-
turns #t then the next read-char operation on the given
port is guaranteed not to hang. If the port is at end of
file then char-ready? returns #t. Port may be omit-
ted, in which case it defaults to the value returned by
current-input-port.

Rationale: €har-readychar-ready? exists to make it possi-
ble for a program to accept characters from interactive ports
without getting stuck waiting for input. Any input editors as-
sociated with such ports must ensure that characters whose
existence has been asserted by char-ready? cannot be rubbed
out. If char-ready? were to return #f at end of file, a port at
end of file would be indistinguishable from an interactive port

that has no ready characters.

(read-u8)
(read-u8 port)

Returns the next byte available from the binary input port,
updating the port to point to the following byte. If no
wore bytes are available, an end of file object is returned.
Port may be omitted, in which case it defaults to the value
returned by current-input-port.

procedure
procedure

(peek-u8)
(peek-u8 port)

Returns the next byte available from the binary input port,
without updating the port to point to the following byte.
If no_more bytes are available, an end of file object is
returned. Port may be omitted. in which case it defaults
to the value returned by current-input-port.

procedure
procedure
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(u8-ready?)
(u8-ready? port)

Returns #t if a byte is ready on the binary input port and
returns #f otherwise. If u8-ready? returns #t then the the
next_read-us operation_on_the given port is_guaranteed
not to hang. 1If the port is at end of file then us-ready?
returns #t. Port may be omitted, in which case it defaults
to the value returned by current-input-port.

procedure
procedure

procedure
procedure

(read-bytevector length)
(read-bytevector length port)

Reads the next length bytes, or as many as are available
before_the_end_of file, from_the binary input port into
a newly allocated bytevector in_left-to-right order and
returns the bytevector. If no bytes are available, an end of
file object is returned. Port may be omitted, in which case
it defaults to the value returned by current-input-port.

(read-bytevector! bytevector start end)
(read-bytevector! bytevector start end port)
procedure

Reads_the next end — start_bytes, or as many as are
available before the end of file, from the binary input port
into_bytevector in left-to-right order beginning at _the start
position. Returns the number of bytes read. If no bytes
are available, an end of file object is returned. Port may
be omitted, in which case it defaults to the value returned

by current-input-port.

procedure

6.13.3. Output

(write obj)
(write obj port)

write library procedure
write library procedure

Writes a written representation of obj to the given textual
output port. Strings that appear in the written representa-
tion are enclosed in doublequotes, and within those strings
backslash and doublequote characters are escaped by back-

slashes. Symbols _that contain non-ASCII characters are
escaped_cither with inline hex escapes or with vertical
bars. Character objects are written using the #\ notation.
Shared list_structure is represented using datum labels.
Writewrite returns an unspecified value. The-argument
Port may be omitted, in which case it defaults to the value
returned by current-output-port.

write library procedure
write library procedure

(write-simple obj)
(write-simple obj port)

write-simple is the same as write, except that shared
structure is not represented using datum labels. This

may cause write-simple not to terminate if obj contains

write library procedure
write library procedure

(display obj)
(display obj port)

Writes a representation of obj to the given textual output
port. Strings that appear in the written representation
are not enclosed in doublequotes, and no characters are
escaped within those strings. Symbols are not escaped.
Character objects appear in the representation as if writ-
ten by write-char instead of by write. Bisplaydisplay
returns an unspecified value. Fhe-arsument-Port may be
omitted, in which case it defaults to the value returned by
current-output-port.

Rationale:  Weitewrite is intended for producing machine-

readable output and dlsplay is—for producmg human readable

output

procedure
procedure

(newline)
(newline port)

Writes an end of line to_textual output port. Exactly how
this is done differs from one operating system to another.
Returns an unspecified value. The-argument-Port may be
omitted, in which case it defaults to the value returned by
current-output-port.

procedure
procedure

(write-char char)
(write-char char port)

Writes the character char (not an external representa-
tion of the character) to the given textual output port
and returns an unspecified value. Fhe—Port may be

omitted, in which case it defaults to_the value returned

by current-output-port.

procedure
procedure

(write-u8 byte)
(write-u8 byte port)

Writes the byte to the given binary output port argument
and returns an unspecified value. Port may be omit-

ted, in which case it defaults to the value returned by
current-output-port.

procedure
procedure

(write-bytevector bytevector)
(write-bytevector bytevector port)

Writes the bytes of bytevector in left-to-right order to the
binary output port. Port may be omitted, in which case it
defaults to the value returned by current-output-port.

(write-partial-bytevector bytevector start end)
procedure



(write-partial-bytevector bytevector start end port)
procedure

Writes the bytes of bytevector from start (inclusive) to end
(exclusive) in left-to-right order to the binary output port.
Port may be omitted, in which case it defaults to the value
returned by current-output-port.

procedure
procedure

(flush-output-port)
(flush-output-port port)

Flushes any buffered output from the buffer of output-port
to the underlying file or device and returns an unspecified
value, Port may be omitted, in which case it defaults to
the value returned by current-output-port.

6.13.4. System interface

Questions of system interface generally fall outside of the
domain of this report. However, the following operations
are important enough to deserve description here.

(load filename) load library procedure
(load filename environment-specifier)
load library procedure

showld-be-a—stringrnaminge—An implementation-dependent

operation is used to transform filename into the name of an
existing file containing Scheme source code. The load pro-

cedure reads expressions and definitions from the file and
evaluates them sequentially —in the environment specified
by _environment-specifier. ___If environment-specifier is
omitted, (interaction-environment) is assumed.

It is unspecified whether the results of the expres-
sions are printed. The load procedure does not af-
fect the values returned by current-input-port and
current-output-port. Leadlt returns an unspecified
value.

Rationale: For portability, load must operate on source files.
Its operation on other kinds of files necessarily varies among

implementations.

(file-exists? filename) file library procedure

The-effeet-of-It is an error if filename is not a string. The
transcript-onfile-exists? isto-openprocedure returns
#t if the named file exists at the time the procedure is

called, #f otherwise.

(delete-file filename)

It is an error if filename is not a string. The delete-file
rocedure deleteb the named file for—emf&p&t—fmd—mﬁﬂm

file library procedure
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is—ended-by-a-eallto-if it exists and can be deleted, and
returns an unspecified value. If the file does not exist or
cannot be deleted, an error is signalled.

(command-line) process-context library procedure

Returns the command line passed to the process as a list
of strings. The first string corresponds to the command
name, and is implementation-dependent. It is an error to

(exit)
(exit obj)

process-context library procedure
process-context library procedure

Exits the running program and communicates an exit value
to the operating system. If no argument is supplied, the
transeript-effexit procedure should communicate to
the operating system that_the program exited normally.
If an argument is supplied, the exit procedure should

the operating system. If obj is #f, the exit is assumed to
be abnormal.

(get-environment-variable name)
process-context library procedure

Most_operating systems provide ecach running process
with an environment consisting of environment variables.
(This environment is not to be confused with the Scheme
Both the name and value of an environment variable are
strings. __ The procedure get-environment-variable
returns_the value of the environment variable name,
or #f if the named environment variable is not found.
get-environment-variable may use localesetting
information to encode the name and decode the
value of the environment variable. It is an error if

et-environment-variable can’t decode the value. It is
also an error to mutate the resulting string.

(get—-environment-variable "PATH")
= !/usr/local/bin:/usr/bin:/bin"

(get-environment-variables)
process-context library procedure

Returns the names and values of all the environment

variables as an alist, where the car of each entry is the

name of an environment variable and the cdr is its value,

both as strings. The order of the list is unspecified. It is
an error to mutate any of these strings.

(get—environment-variables)

EEN ((IIUSERII . "I'OOt") ("HOME" . n/u))
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(current-second) time library procedure

Returns an inexact number representing time on the
International Atomic Time (TAI) scale. The value 0.0

represents ten seconds after midnight on January 1, swhich

: re—anspecified: QMXWM
MM@E@W&@MMW&
TAI second later. Neither high-accuracy nor high-precision
values are required; in particular, returning Coordinated
Universal Time plus a suitable constant may be the best
an implementation can do.

(current-jiffy)

Returns the number of jiffies that have elapsed since
an_arbitrary, implementation-defined epoch. A jiffy is
an_implementation-defined fraction of a second which is
defined by the return value of the jiffies-per-second
procedure. The starting epoch is guaranteed to be constant
during a run of the program, but may vary between

different runs.

time library procedure

(jiffies-per-second) time library procedure

Returns an exact integer representing the number of jiffies
er SI second. This value is an implementation-specified

constant. _

(define (time-length)

(let ((list (make-list 100000)

7. Formal syntax and semantics

This chapter provides formal descriptions of what has al-
ready been described informally in previous chapters of this
report.

7.1. Formal syntax

This section provides a formal syntax for Scheme written
in an extended BNF.

All spaces in the grammar are for legibility. Case is insignif-
icant; for example, #x1A and #X1a are equivalent. (empty)
stands for the empty string.

The following extensions to BNF are used to make the de-
scription more concise: (thing)* means zero or more occur-
rences of (thing); and (thing)™ means at least one (thing).

7.1.1. Lexical structure

This section describes how individual tokens (identifiers,
numbers, etc.) are formed from sequences of characters.
The following sections describe how expressions and pro-
grams are formed from sequences of tokens.

(Intertoken space) may occur on either side of any token,
but not within a token.

Identifiers, dot, numbers, characters, and booleans are ter-
minated by a (dehmlter) or by the end of the input.

are reserved for future extensmns to the language:

3

In addition to the identifier characters of the ASCII reper-
toire specified below, Scheme implementations may permit
any additional repertoire of Unicode characters to be em-
ployed in identifiers, provided that each such character has
a Unicode general category of Lu, LI, Lt, Lm, Lo, Mn, Mc,
Me, Nd, NI, No, Pd, Pc, Po, Sc, Sm, Sk, So, or Co, or is
U+200C or U4200D (the zero-width non-joiner and joiner,
respectively, which are needed for correct spelling in Per-
sian, Hindi, and other languages). It is an error to use a
non-Unicode character in symbols or identifiers.

All Scheme implementations must permit the escape se-
quence \x<hexdigits>; to appear in Scheme identifiers.
If the character with the given Unicode scalar value is sup-
ported by the implementation, identifiers containing such
a sequence are equivalent to identifiers containing the cor-
responding character.

(token) — (identifier) | (boolean) | (number)
| (character) | (string)
| C] ) [ #C | #u8C| 2|~ |, ] .,0].
(delimiter) — (whitespace) | ( | ) | "]
(intraline whitespace) — (space or tab)




(whitespace) — (intraline whitespace) | (newline)
| (return)
(comment) — ; (all subsequent characters up to a
line break)
| (nested comment)
| #; (atmosphere) (datum)
(nested comment) — #| (comment text)
(comment cont)* |#
(comment text) — (character sequence not containing
#| or |#)
comment cont) — (nested comment) (comment text)
atmosphere) — (whitespace) | (comment)
intertoken space) — (atmosphere)*

o~ o~~~

identifier) — ((initial) (subsequent)*
except for (infinity), +i and -i)
vertical bar) (symbol element)*
peculiar identifier)
(letter) | (special initial)
inline hex escape)

(vertical bar)

|

| <
(initial) —»
(

|

(letter) — a | bl c| ... | z
|A|B|C]| ... |2

(special initial) — ' | $ | % | & | x| /| | <| =
[ I R O B

(subsequent) — (initial) | (digit)
| (special subsequent)
(digit) — 0] 1]2|3|4]|5|6|7|8]29
(hex digit) — (digit)
|a|A|b|B|]c|C|d|D|e|E|f]|F
(explicit sign) — + | -
(special subsequent) — (explicit sign) | . | @
(inline hex escape) — \x(hex scalar value);
(hex scalar value) — (hex digit)™
(peculiar identifier) — (explicit sign)
| (explicit sign) (sign subsequent) (subsequent)*
| (explicit sign) . (dot subsequent) (subsequent)*
| . (non-digit) (subsequent)*
non-digit) — (dot subsequent) | (explicit sign)
dot subsequent) — (sign subsequent) | .
sign subsequent) — (initial) | (explicit sign) | @
symbol element) —
(any character other than (vertical bar) or \)

o~ o~~~

(boolean) — #t | #f | #true | #false

(character) — #\ (any character)
| #\ (character name)
| #\x(hex scalar value)
(character name) — alarm | backspace | delete
| escape | newline | null | return | space | tab
(string) — " (string element)* "
(string element) — (any character other than " or \)
[ Na | \b [\t [ \n [ \r [ \"[\\
| \(intraline whitespace)(line ending)
(intraline whitespace)
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| (inline hex escape)
(bytevector) — #u8((byte)*)
(byte) — (any exact integer between 0 and 255)

(number) — (num 2) | (num 8)
| (num 10) | (num 16)

The following rules for (num R), (complex R), (real R),
(ureal R), (uinteger R), and (prefix R) are implicitly repli-
cated for R =2,8,10, and 16. There are no rules for
(decimal 2), (decimal 8), and (decimal 16), which means
that numbers containing decimal points or exponents are
always in decimal radix. Although not shown below, all al-
phabetic characters used in the grammar of numbers may
appear in either upper or lower case.

(num R) — (prefix R) (complex R)

(complex R) — (real R) | (real R) @ (real R)
| (real R) + (ureal R) i | (real R) - (ureal R) i
| (teal R) + i | (real R) - i | (real R) (infinity) i
| + (ureal R) i | - (ureal R) i

| (infinity) i | + i | - 1

(real R) — (sign) (ureal R)
| (infinity)

(ureal R) — (uinteger R)
| (uinteger R) / (uinteger R)
| (decimal R)
(decimal 10) — (uinteger 10) (suffix)
| . (digit 10)" (suffix)
| (digit 10)* . (digit 10)*
(uinteger R) — (digit R)*
(prefix R) — (radix R) (exactness)
| (exactness) (radix R)
(infinity) — +inf.0 | -inf.0 | +nan.0

(suffix)

(suffix) — (empty)

| (exponent marker) (sign) (
exponent marker) — e | s | f
sign) — (empty) | + | -
exactness) — (empty) | #i | #e
radix 2) — #b
radix 8) — #o

digit 10)*
ldf1

7.1.2. External representations

(Datum) is what the read procedure (section [6.13.2]) suc-
cessfully parses. Note that any string that parses as an
(expression) will also parse as a (datum).
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(datum) — (simple datum) | (compound datum)
| (label) = (datum) | (label) #
(simple datum) — (boolean) | (number)
| (character) | (string) | (symbol) | (bytevector)
(symbol) — (identifier)
(compound datum) — (list) | (vector)
(list) — ((datum)*) | ({datum)* . (datum))
| (abbreviation)
abbreviation) — (abbrev prefix) (datum)
abbrev prefix) — > | ~ | , | ,@
vector) — #((datum)*)
label) — # (digit 10)*

o~ o~~~

7.1.3. Expressions

The definitions in this and the following subsections assume
that all the syntax keywords defined in this report have
been properly imported from their libraries, and that none
of them have been redefined or shadowed.

(expression) — (identifier)
| (literal)
| (procedure call)
| (lambda expression)
| (conditional)
| (assignment)
| (derived expression)
| (macro use)
| (macro block)
(literal) — (quotation) | (self-evaluating)
(self-evaluating) — (boolean) | (number)

| (character) | (string) | (bytevector)
(quotation) — ’{datum) | (quote (datum))
(procedure call) — ({operator) (operand)*)
(operator) — (expression)
(operand) — (expression)

(lambda expression) — (lambda (formals) (body))
(formals) — ((identifier)*) | (identifier)

| ((identifier)™ . (identifier))
(body) — (definition)* (sequence)
(sequence) — (command)* (expression)
(command) — (expression)

conditional) — (if (test) (consequent) (alternate))
test) — (expression)

consequent) — (expression)

alternate) — (expression) | (empty)

o~ o~~~

(assignment) — (set! (identifier) (expression))

(derived expression) —
(cond {cond clause)™)
| (cond (cond clause)* (else (sequence)))

| (case (expression)
(case clause)™)

| (case (expression)

(case clause)*

(else (sequence)))
(case (expression)

(case clause)™

(else => (recipient)))
| (and (test)*)
| (or (test)*)
| (when (expression) (test) (sequence))
| (unless (expression) (test) (sequence))
| (let ({binding spec)*) (body))
| (et (identifier) ((binding spec)*) (body))
| (Let* ((binding spec)*) (body))
|
|
|
|
|
|

(letrec ((binding spec)*) (body))
(letrec* ((binding spec)*) (body))
(let-values ({mv binding spec)*) (body))
(let*-values ({(mv binding spec)*) (body))
(begin (sequence))
(do ((iteration spec)*)
((test) (do result))
(command)*)
| (delay (expression))
| (lazy (expression))
| (parameterize ((expression) (expression))* (body))
| (guard ((identifier) (cond clause)*) (body))
| (quasiquotation)
| (case-lambda (case-lambda clause)*)
(cond clause) — ((test) (sequence))
| ((test))
| ({test) => (recipient))
(recipient) — (expression)
(case clause) — (({datum)*) (sequence))
| (((datum)*) => (recipient))
(binding spec) — ({identifier) (expression))
(mv binding spec) — ({formals) (expression))
(iteration spec) — ((identifier) (init) (step))
| ((identifier) (init))
case-lambda clause) — ((formals) (body))
init) — (expression)
step) — (expression)
do result) — (sequence) | (empty)

o~ o~~~

(macro use) — ((keyword) (datum)*)
(keyword) — (identifier)

(macro block) —

(let-syntax ({syntax spec)*) (body))

| (letrec-syntax ((syntax spec)*) (body))
(syntax spec) — ({(keyword) (transformer spec))



7.1.4. Quasiquotations

The following grammar for quasiquote expressions is not
context-free. It is presented as a recipe for generating an
infinite number of production rules. Imagine a copy of the
following rules for D = 1,2,3,.... D keeps track of the
nesting depth.

(quasiquotation) — (quasiquotation 1)
(qq template 0) — (expression)
(quasiquotation D) — (qq template D)
| (quasiquote (qq template D))
(qq template D) — (simple datum)
| (list qq template D)
| (vector qq template D)
| (unquotation D)
(list qq template D) — ({qq template or splice D)*)
| ({qq template or splice D)™ . (qq template D))
| ’{qq template D)
| (quasiquotation D + 1)
(vector qq template D) — #({(qq template or splice D)*)
(unquotation D) — ,{qq template D — 1)
| (unquote (qq template D — 1))
(qq template or splice D) — (qq template D)
| (splicing unquotation D)
(splicing unquotation D) — ,@(qq template D — 1)
| (unquote-splicing (qq template D — 1))

In (quasiquotation)s, a (list qq template D) can some-
times be confused with either an (unquotation D) or
a (splicing unquotation D). The interpretation as an
(unquotation) or (splicing unquotation D) takes prece-
dence.

7.1.5. Transformers

(transformer spec) —
(syntax-rules ((identifier)*) (syntax rule)*)
| (syntax-rules (identifier) ((identifier)*)
(syntax rule)*)
(syntax rule) — ({pattern) (template))
(pattern) — (pattern identifier)
| (underscore)
| ((pattern)*)
| ({pattern)* . (pattern))
| ((pattern)* (pattern) (ellipsis) (pattern)*)
| ((pattern)* (pattern) (ellipsis) (pattern)*
. (pattern))
| #((pattern)*)
| #((pattern)* (pattern) (ellipsis) (pattern)*)
| (pattern datum)
(pattern datum) — (string)
| (character)
| (boolean)
| (number)
(template) — (pattern identifier)

7. Formal syntax and semantics

| ({template element)*)

| ({template element)™ . (template))

| #((template element)*)

| (template datum)
(template element) — (template)

| (template) (ellipsis)
(template datum) — (pattern datum)
(pattern identifier) — (any identifier except ...)
(ellipsis) — (an identifier defaulting to ...)
(underscore) — (the identifier _)

7.1.6. Programs and definitions

(program) — (command or definition)*
(command or definition) — (command)
| (definition)
| (import (import set)™)
| (begin (command or definition)™)
(definition) — (define (identifier) (expression))
| (define ((identifier) (def formals)) (body))
| (syntax definition)
| (define-values (def formals) (body))
| (define-record-type (identifier)
(constructor) (identifier) (field spec)™*)
| (begin (definition)*)
(def formals) — (identifier)*
| (identifier)* . (identifier)
(constructor) — ({identifier) (field name)*)
(field spec) — ({field name) (accessor))
| ((field name) (accessor) (mutator))
field name) — (identifier)
accessor) —» (identifier)
mutator) — (identifier)
syntax definition) —
(define-syntax (keyword) (transformer spec))

o~ o~~~

7.1.7. Libraries

(library) —

61

(define-library (library name) (library declaration)*)

(library name) — ((library name part)™*)
(library name part) — (identifier) | (uinteger 10)
(library declaration) — (export {(export spec)™*)

| (import (import set)*)

| (begin (command or definition)*)

| (include (string)™)

| (include-ci (string)™)

| (cond-expand (cond-expand clause)*)

| (cond-expand (cond-expand clause)*

(else (library declaration)*))

(export spec) — (identifier)

| (rename (identifier) (identifier))
(import set) — (library name)
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| (only (import set) (identifier)™)

| (except (import set) (identifier)™)

| (prefix (import set) (identifier))

| (rename (import set) (export spec)™)
(cond-expand clause) —

({feature requirement) (library declaration)*)
(feature requirement) — (identifier)

| (library name)

| (and (feature requirement)*)

| (or (feature requirement)*)

| (not (feature requirement))

7.2. Formal semantics

This section provides a formal denotational semantics for
the primitive expressions of Scheme and selected built-in
procedures. The concepts and notation used here are de-
scribed in [35]; the notation is summarized below:

(...) sequence formation
sk kth member of the sequence s (1-based)
s length of sequence s

s8t concatenation of sequences s and ¢

stk drop the first £ members of sequence s

t — a,b McCarthy conditional “if ¢ then a else b”
plx/i] substitution “p with « for ¢’

zinD injection of z into domain D

x|D projection of  to domain D

The reason that expression continuations take sequences
of values instead of single values is to simplify the formal
treatment of procedure calls and multiple return values.

The boolean flag associated with pairs, vectors, and strings
will be true for mutable objects and false for immutable
objects.

The order of evaluation within a call is unspecified. We
mimic that here by applying arbitrary permutations per-
mute and unpermute, which must be inverses, to the argu-
ments in a call before and after they are evaluated. This is
not quite right since it suggests, incorrectly, that the order
of evaluation is constant throughout a program (for any
given number of arguments), but it is a closer approxima-
tion to the intended semantics than a left-to-right evalua-
tion would be.

The storage allocator new is implementation-dependent,
but it must obey the following axiom: if newo €L, then
o (newo |L) | 2 = false.

The definition of K is omitted because an accurate defini-
tion of K would complicate the semantics without being
very interesting.

If P is a program in which all variables are defined before
being referenced or assigned, then the meaning of P is

E[((lambda (I*) P’) (undefined) ...)]

where I* is the sequence of variables defined in P, P’ is the
sequence of expressions obtained by replacing every defini-
tion in P by an assignment, (undefined) is an expression
that evaluates to undefined, and £ is the semantic function
that assigns meaning to expressions.

7.2.1. Abstract syntax

K € Con constants, including quotations
Ielde identifiers (variables)

E € Exp expressions

I' e Com = Exp commands

Exp — K | I | (Eg E®
| (lambda (I*) T'™* Eq)
| (lambda (I* . I) T™* Eg)
| (lambda I I'* Eg)
| (if Eg Eq E2) | (if Ey Ep)
| (set! I E)

7.2.2. Domain equations

ael locations
veN natural numbers
T = {false, true} booleans
Q symbols
H characters
R numbers
E,=LXLXT pairs
E, =L*xT vectors
Eg =L*XT strings
M = {false, true, null, undefined, unspecified}
miscellaneous
¢peF =Lx(E*>K—C) procedure values
ecE =Q+H+R+E, +E, +E;+M+F
expressed values
ceS =L—>(EXT) stores
peU =Ide—1L environments
feC =S—A command continuations
keK =E¥—>¢C expression continuations
A answers
X errors
7.2.3. Semantic functions

K:Con —E
E:Exp—>U—K—C
EX¥ Exp* 2 U—=K—C
C:Com*—-U—=C—C

Definition of K deliberately omitted.

EIK] = Mok . send (K[K]) &



EM] = Apk . hold (lookup p T)
(single(Xe . € = undefined —
wrong “undefined variable”,
send e K))

E[(Eo EN] =
Apk . EX(permute((Eo) § E*))
P
(Ae* . ((Ae* . applicate (e* L 1) (¢e*11) k)
(unpermute €*)))

E[(lambda (I*) I'* Eg)] =
APK . Ao .
newo € L —
send ({(newo | L,
Ae¥R' . Fet = #1F —
tievals(Aa* . (Ap" . C[T*]p' (E[Eo]p'x))
(exztends p I* o*))
€*,
wrong “wrong number of arguments”)
in E)
K
(update (new o | L) unspecified o),
wrong “out of memory” o

E[(Qambda (I* . I) T* Eg)] =
APK . Ao .
newo €L —
send ({newo | L,
Ae¥K . Het > H#TF —
tievalsrest
(a*. (A’ CIT*]0! (E[Eol ')
(extends p (I* § (I)) a*))

E*

(#1%),
wrong “too few arguments”) in E)
K
(update (new o | L) unspecified o),
wrong “out of memory” o

E[(lambda I T'* Eg)] = £[(lambda (. I) I'* Eg)]
gl[(if Eo E; Eg)ﬂ =
Apk . E[Eo] p (single (Xe . truish e — E[E1]pk,
E[Ealpn))

E[Gif Eo END] =
Apk . E[Eo] p (single (Ae . truish e — E[E1]pk,
send unspecified k))

Here and elsewhere, any expressed value other than undefined
may be used in place of unspecified.

E[(set! I E)] =
Apk . E[E] p (single(Xe . assign (lookup p 1)
€
(send unspecified k)))

EX] = Apr - k()
EX[Eo EX] =
Apk . E[Eo] p (single(Aeo . EX[E*X] p (Ae* . & ({€0) § €¥))))
Cll=Xpb.0
C[To T*] = Apf . E[To] p (Ae* . C[T*]ph)
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7.2.4. Auxiliary functions

lookup : U — Ide — L
lookup = Apl . pl

extends : U — Ide* — L* - U
extends =
Apl¥a* . #1* =0 — p,
extends (p{(a* 4 1)/(* | 1)) (I* 1) (a* 1)

wrong : X — C [implementation-dependent]

send:E—+K—=C
send = Xek . k{e)

single: (E— C) — K
single =
Ape* . #Het =1 = P(e* | 1),

wrong “wrong number of return values”

new: S — (L + {error}) [implementation-dependent]

hold:L — K —C
hold = Aako . send(oca | 1)ko

assign: L - E—-C—=C
assign = Aaebo . O(update aeo)

update : L - E— S — S
update = Aaeo . o[(e, true) /a]

tievals : (L* - C) - E* = C
tievals =
Mpe*o . #e* =0 — Y()a,
newo € L — tievals (Ao . ¢ ({(newo | L) § a*))
(e 11)
(update(newo | L)(e* | 1)0),
wrong “out of memory” o

tievalsrest : (L* - C) = E* 5 N —C
tievalsrest =
Ape*v . list (dropfirst e*v)
(single(Xe . tievals ¢ ((takefirst e*v) § (e))))

dropfirst = Nln.n =0 — [, dropfirst(1 1 1)(n — 1)
takefirst=Xn.n=0— (), (l | 1) § (takefirst (I 1 1)(n — 1))

truish : E — T
truish = Xe . € = false — false, true

permute : Exp* — Exp* [implementation-dependent]

unpermute : E* — E* [inverse of permute]

applicate : E — E¥ - K — C
applicate =
Aee*r . e € F — (e |F | 2)e*k, wrong “bad procedure”

onearg: (E—K—C) = (E¥ - K — C)
onearg =
Atk . #e* =1 — ((e* ] 1)k,

wrong “wrong number of arguments”

twoarg: (E—-E —K—C) = (E* - K — C)
twoarg =
Ae¥k . #e* =2 = ((eX L 1)(eF | 2)k,

wrong “wrong number of arguments”
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list: E¥x =K —C
list =
Ae*k . #e* = 0 — send null K,
list (e* 1 1)(single(Xe . cons(e* | 1,€)k))

cons:E¥ - K—C
cons =
twoarg (Ae1e260 . newo € L —
(Ao’ . newo’ eL —
send ({newo | L, newo’ | L, true)
in E)
K
(update(new o’ | L)eao’),
wrong “out of memory” o)
(update(newo | L)eio),
wrong “out of memory” o)

less :E¥ - K —C
less =
twoarg (Ae1e2k . (€1 eRA €2 €R) —
send (€1 |R < ez |R — true, false)k,
wrong “non-numeric argument to <)

add : E¥* - K — C
add =
twoarg (Ae1e2k . (€1 eRA €2 €R) —
send((e1 |R+ €2 |R) in E)&,
wrong “non-numeric argument to +”)

car:E¥ - K —C
car =
onearg (e . € € Ey — hold (e | Ep | 1)k,
wrong “non-pair argument to car”)

cdr:E¥ 2K —C [similar to car]

setcar : E¥ - K — C
setcar =
twoarg (Ae1e2k . €1 € Ep —
(1 |Ep | 3) — assign(er |Ep | 1)
€2
(send unspecified k),
wrong “immutable argument to set-car!”,
wrong “non-pair argument to set-car!”)

equ:E¥ - K —C
equ =
twoarg (Ae1e2k . (€1 eMA €2 €M) —
send(e1 | M= ez | M — true, false)rk,
(61€QA62€Q)*>
send(e1 | Q = €2 | Q — true, false)k,
(e1 eHA €2 €H) —
send(e1 | H= ez | H— true, false)xk,
(e1eRA€€R) —
send(e1 |R = €2 | R — true, false)rk,
(61 GEPAEQGEP) —
send ((Apipz - ((p1 4 1) = (p2 | 1))A

(pr12) = (p2l2))— true,
false)
(€1 |Ep)
(€2 | Ep))

(e1€Ey Nea €Ey) — ...,
(61 GES/\EQGES)*)...,
(e1eFAeeF)—
send((e1 |Fl 1) = (e2 |F | 1) — true, false)
I{7
send false k)

apply :E¥* - K — C

apply =
twoarg (\e1€2k . €1 € F — valueslist (e2) (Ae* . applicate e1€*k),
wrong “bad procedure argument to apply”)

valueslist : E¥ — K — C

valueslist =
onearg (Xek . € € Ep —
cdre)
(Ae* . valueslist

e*

(Ne* . car{e) (single(Xe . k({€) § €¥))))),
€ = null = k(),
wrong “non-list argument to values-1list”)

cwee : E¥ - K — C
cwee =
onearg(Aek . € € F —
(Ao .newo el —
applicate e
({newo | L, A\e*k’ . ke*) in E)
K
(update (newo | L)
unspecified
o),
wrong “out of memory” o),
wrong “bad procedure argument”)

[call-with-current-continuation]

values : E¥* — K — C
values = \e*k . ke*

cwv:E¥ - K—C
cwvy =
twoarg (Ae1ezk . applicate €1 )(Ae* . applicate ez €*))

[call-with-values]

7.3. Derived expression types

This section gives macro definitions for the derived expres-
sion types in terms of the primitive expression types (lit-
eral, variable, call, lambda, if, and set!)—Seeseetion{e1d]

(define-syntax cond
(syntax-rules (else =>)
((cond (else resultl result2 ...))
(begin resultl result2 ...))
((cond (test => result))
(let ((temp test))
(if temp (result temp))))

((cond (test => result) clausel clause2 ...)
(let ((temp test))
(if temp

(result temp)
(cond clausel clause2

ce)))



((cond (test)) test)

((cond (test) clausel clause2 ...)
(let ((temp test))
(if temp
temp
(cond clausel clause2 ...))))

((cond (test resultl result2 ...))
(if test (begin resultl result2 ...)))
((cond (test resultl result2 ...)
clausel clause2 ...)
(if test
(begin resultl result2 ...)
(cond clausel clause2 ...)))))

(define-syntax case
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val ...))))

(define-syntax let*
(syntax-rules ()
((let* () bodyl body2 ...)
(let () bodyl body2 ...))
((let* ((namel vall) (name2 val2) ...)
bodyl body2 ...)
(let ((namel vall))
(let* ((name2 val2) ...)
bodyl body2 ...)))))

The following letrec macro uses the symbol <undefined>
in place of an expression which returns something that

(syntax-rules (else =>) when stored in a location makes it an error to try to ob-

((case (key ...) tain the value stored in the location (no such expression is

clauses ...) defined in Scheme). A trick is used to generate the tempo-

(et ((atom-key (key ...))) rary names needed to avoid specifying the order in which

((c;::sle{e;tom—key clauses ...))) the ve.xlues are ex‘/a.Lluated. This could also be accomplished
(else => result)) __(result key)) __((case Wel"® " PPN I HOresuta ...))

(begin resultl result2 ...))
((case key
((atoms ...) resultl result2 ...))
(if (memv key ’(atoms ...))

(define-syntax letrec
(syntax-rules ()
((letrec ((varl initl) ...) body ...)
(letrec "generate_temp_names"

(begin resultl result2 ...))) (varl ...)
((case key O
((atoms ...) => result)) (if (memv key ’(atoms ...)) ; ult key))) ((case key ((atoms ..
clause clauses ...) body ...))
(if (memv key ’(atoms ...)) ((letrec "generate_temp names"
(begin resultl result2 ...) 0O
(case key clause clauses ...))))) (templ ...)
((varl init1) ...)
(define-syntax and body ...)
(let ((varl <undefined>) ...)

(syntax-rules ()
((and) #t)
((and test) test)
((and testl test2 ...)
(if testl (and test2 ...) #f))))

(define-syntax or
(syntax-rules ()
((or) #£f)
((or test) test)
((or testl test2 ...)
(let ((x testl))
(if x x (or test2 ...))))))

(define-syntax let
(syntax-rules ()
((let ((name val) ...) bodyl body2 ...)
((lambda (name ...) bodyl body2 ...)
val ...))
((let tag ((name val) ...) bodyl body2 ...)
((letrec ((tag (lambda (name ...)
bodyl body2 ...)))
tag)

(let ((templ initl) ...)
(set! varl templ)

body ...)))

((letrec "generate_temp_names"
xy ...
(temp ...)
((varl initl) ...)
body ...)
(letrec "generate_temp_names"
(y ...

(newtemp temp ...)
((varl initl) ...)
body ...))))

(define-syntax letrecx*

(syntax-rules () ((letrec* ((varl initl) ...) bodyl body:

(define-syntax let-values

(syntax-rules () ((let-values (binding ...) body0O bodyl

((let-values "bind" () tmps body) (let tmps body))
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((let-values "bind" ((b0 e0) binding ...) tmps body))) (let-values "mktmp" b0 e0 () (binding ....

((let-values "mktmp

((let-values "mktm

(define-syntax let*-values
(syntax-rules ()

((let*-values (bindingO bindingl ...

{define-syntax define-values

((let*-values () bodyO bodyl ...

((let-values "mktmp" () e0 args bindings tmps body) (call-with-values (lambda () e0) (lambc
Here s & possible Tplementation of delay, Torcs’ and
5 NV efil O ‘

SION_ (1et-values "mktmp" b _e0 (arg

| AAAAL AL
ression))
.ﬁ%x%od ) >” (call-with-values

to have the same meaning as the procedure call
) egi b

(lambda () e0)

(expression)))

(let-values (bindingO) (let*-values (bind

(define-syntax lazy (syntax-rules () ((lazy expression)

(syntax-rules () ((define-values () expr) (define d (call-with-values (lambda () expr)

{define-syntax begin
(syntax-rules ()
((begin exp ...)

((lambda () exp ...)))))

The following alternative expansion for begin does not
make use of the ability to write more than one expression
in the body of a lambda expression. In any case, note that
these rules apply only if the body of the begin contains no
definitions.

(define-syntax begin
(syntax-rules ()
((begin exp)

(delay (expression))
to have the same meaning as:
(lazy (make-promise #t (expression)))

as follows_

(define-syntax delay (syntax-rules () ((delay expression)
where make-promise is defined as follows:
(define make-promise (lambda (done? proc) (list (cons don

Finally, we define force to call the procedure expressions
in promises iteratively using a trampoline technique

exp) following [13] until a non-lazy result (i.e. a value created
((begin expl exp2 ...) by delay instead of lazy) is returned, as follows:
( *et—x— call-with-values (lambda () expl)
“A21;;ga;”;;VEVVVVN“““Azﬁﬁgg;;Vg;;EN ) ige (force promise) (if (promise-done? promise)
) ¢ (lambda args ______( s N

The following definition of do uses a trick to expand the
variable clauses. As with letrec above, an auxiliary macro
would also work. The expression (if #f #f) is used to
obtain an unspecific value.

(define-syntax do
(syntax-rules ()
((do ((var init step ...) ...)
(test expr ...)

command ...)
(letrec
((Loop
(lambda (var ...)
(if test
(begin
(if #f #f)
expr ...)
(begin
command

(loop (do "step" var step ...)
223
(loop init ...)))
((do "step" x)
x)
((do "step" x y)

with the following promise accessors:
(define promise-done? (lambda (x) (car (car x)))) (define pror

The_following_implementation of make-parameter and
parameterize is_suitable for an implementation with
no_threads. Parameter objects are implemented here
as _procedures, using two_ arbitrary unique objects
<param-set!> and <param-convert>:

(define (make-parameter init . o) (let* ((converter

Then parameterize uses dynamic-wind to dynamicall
rebind the associated value:

(define-syntax parameterize (syntax-rules () ((parameteri:

The following implementation of guard depends on an
auxiliary macro, here called guard-aux.

(define-syntax guard (syntax-rules () ((guard (var clause

(define-syntax guard-aux (syntax-rules (else =>) ((guard-:

(define-syntax case-lambda
(syntax-rules () ((case-lambda (params bodyO bodyi ...)



Standard Libraries

This section lists the exports provided by the standard li-
braries. The libraries are factored so as to separate features
which might not be supported by all implementations, or
which might be expensive to load.

Appendix A.

The scheme library prefix is used for all standard libraries,
and is reserved for use by future standards.

Base Library

The (scheme base) library exports many of the proce-
dures and syntax bindings that are traditionally associated
with Scheme.

* + -
/ <

<= = =>

> >= -

abs and append

apply assoc assq

assv begin binary-port?
boolean? bytevector-copy

bytevector-copy!
bytevector-copy-partial
bytevector-copy-partial!
bytevector-length
bytevector-u8-ref

bytevector-u8-set! bytevector?
caaaar caaadr caaar
caadar caaddr caadr

caar caar cadaar
cadadr cadar caddar
cadddr caddr cadr

cadr call-with-current-continuation
call-with-port call-with-values

call/cc car case

cdaaar cdaadr cdaar
cdadar cdaddr cdadr

cdar cddaar cddadr
cddar cdddar cddddr
cdddr cddr cdr

ceiling char->integer char-ready?
char<="7 char<? char="7
char>=7 char>? char?

close-input-port

close-output-port close-port

complex? cond cond-expand
cons current-error-port
current-input-port

current-output-port define
define-record-type define-syntax
define-values denominator do

dynamic-wind else eof-object?
eq? equal? eqv?
error error-object-irritants

error-object-message error-object?

even? exact->inexact
exact-integer-sqrt exact-integer?
exact? expt floor
flush-output-port for-each
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gecd

get-output-bytevector

get-output-string

if

inexact?
integer?
length
let*-values
letrec

list
list-copy
list-tail
make-list
make-vector
member

min

newline
number->string
odd?

import
input-port?
lambda

let
let-syntax
letrecx*
list->string
list-ref
list?
make-parameter
map

memq

modulo

not

number?

guard
inexact->exact
integer->char
lcm

letx*
let-values
letrec-syntax
list->vector
list-set!
make-bytevector
make-string
max

memv
negative?
null?

numerator

open-input-bytevector

open-input-string
open-output-bytevector
open-output-string

output-port?
peek-char

port?
quasiquote
raise

rational?
read-bytevector!
read-line
remainder

set!

string
string->symbol
string-append
string-for-each
string-ref
string<?
string>?
symbol->string
syntax-rules
u8-ready?
unquote-splicing
values
vector->string
vector-for-each
vector-ref

when
write-bytevector

pair?
peek-u8
positive?
quote

raise-continuable

rationalize

read-u8
reverse
set-car!
string->list
string->utf8
string-copy
string-length
string-set!
string="7
string?
symbol?
textual-port?
unless

vector
vector-copy
vector-length
vector-set!

or
parameterize
port-open?
procedure?
quotient

read-bytevector
read-char
real?

round

set-cdr!
string->number
string->vector
string-fill!
string-map
string<=7
string>=7
substring
syntax-error
truncate
unquote
utf8->string
vector->list
vector-fill!
vector-map
vector?

with-exception-handler

write-partial-bytevector

zero?

Inexact Library

acos
cos
log
sqrt

asin
exp
nan?
tan

write-char
write-u8

The (scheme inexact) library exports procedures which
are typically only useful with inexact values.

atan
finite?
sin
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Complex Library

The (scheme complex) library exports procedures which
are typically only useful with complex values.

angle imag-part magnitude
make-polar make-rectangular
real-part

Division Library

The (scheme division) library exports procedures for in-
teger division.

ceiling-quotient

ceiling-remainder ceiling/
centered-quotient

centered-remainder centered/
euclidean—-quotient

euclidean-remainder euclidean/
floor-quotient floor-remainder floor/
round-quotient round-remainder round/
truncate-quotient

truncate-remainder truncate/

Lazy Library

The (scheme lazy) library exports procedures and syntax
keywords for lazy evaluation.

delay eager force
lazy
Case-Lambda Library
The  (scheme case-lambda) library exports the

case-lambda syntax.

case-lambda

Eval Library

The (scheme eval) library exports procedures for evalu-
ating Scheme data as programs.

environment eval
null-environment

scheme-report-environment

Repl Library

The (scheme repl) library
interaction-environment procedure.

exports the
interaction-environment
Process Context Library

The (scheme process-context) library exports proce-
dures for accessing with the program’s calling context.

command-line exit
get-environment-variable
get-environment-variables

Load Library

The (scheme load) library exports procedures for loading
Scheme expressions from files.

load

File Library

The (scheme file) library provides procedures for access-
ing files.

call-with-input-file

call-with-output-file delete-file
file-exists? open-binary-input-file
open-binary-output-file
open-output-file
with-input-from-file
with-output-to-file

open-input-file

Read Library

The (scheme read) library provides procedures for read-
ing Scheme objects.

read

Write Library

The (scheme write) library provides procedures for writ-
ing Scheme objects.

display write write-simple

Char Library

The (scheme char) library provides procedures for deal-
ing with Unicode character operations.

char-ci<=7
char-ci>=?
char-foldcase
char-numeric?

char-alphabetic?
char-ci<?
char-ci>?
char-lower-case?
char-upcase
char-whitespace?
string-ci<="?
string-ci>="?
string-foldcase

char-ci=?
char-downcase

char-upper-case?

digit-value
string-ci=?
string-downcase

string-ci<?
string-ci>?
string-upcase

Char Normalization Library

The (scheme char normalization) library provides pro-
cedures for dealing with Unicode normalization operations.

string-ni<="?
string-ni>="?

string-ni<?
string-ni>?

string-ni=?



Time
The (scheme time) library provides access to the system

time.

current-jiffy current-second

jiffies-per-second
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Appendix B. Standard Feature Identi-

fiers

An implementation may provide any or all of the feature
identifiers listed below, as well as any others that it chooses,
but must not provide a feature identifier if it does not pro-
vide the corresponding feature. These features are used by
cond-expand.

r7rs

All R"RS Scheme implementations have this feature.

exact-closed

All algebraic operations except / produce exact values
given exact inputs.

ratios

/ with exact arguments produces an exact result when
the divisor is nonzero.

exact-complex

Exact complex numbers are provided.

ieee-float

Inexact numbers are IEEE 754 floating point values.

full-unicode

All Unicode codepoints are supported as characters
(except the surrogates).

windows

This Scheme implementation is running on Windows.

posix

This Scheme implementation is running on a POSIX
system.
unix, darwin, linux, bsd, freebsd, solaris,

Operating system flags (more than one may apply).

i386, x86-64, ppc, sparc, jvm, clr, 1llvm,
CPU architecture flags.

i1p32, 1p64, ilp64,

C memory model flags.

big-endian, little-endian

Byte order flags.

(name)

The name of this implementation.

(name-version)

The name and version of this implementation.
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NOTES

Language changes since R°RS

This section enumerates the differences between this report
and the “Revised® report” [2].

The list is incomplete and subject to change while this
report is in draft status.

e Various minor ambiguities and unclarities in R5RS
have been cleaned up.

e Libraries have been added as a new program structure
to improve encapsulation and sharing of code. Some
existing and new identifiers have been factored out
into separate libraries. Libraries can be imported into
other libraries or main programs, with controlled ex-
posure and renaming of identifiers. The contents of a
library can be made conditional on the features of the
implementation on which it is to be used.

e Exceptions can now be signalled explicitly with raise,
raise-continuable or error, and can be handled
with with-exception-handler and the guard syn-
tax. Any object can specify an error condition; the
implementation-defined conditions signalled by error
have accessor functions to retrieve the arguments
passed to error.

e New disjoint types supporting access to multiple fields
can be generated with SRFI 9’s define-record-type.

e Parameter objects can be created with
make-parameter, and dynamically rebound with
parameterize.

e Bytevectors, homogeneous vectors of integers in the
range [0, 255], have been added as a new disjoint type.
A subset of the procedures available for vectors is
provided. Bytevectors can be converted to and from
strings in accordance with the UTF-8 character en-
coding. Bytevectors have a datum representation and
evaluate to themselves.

e The procedure read-line is provided to make line-
oriented textual input simpler.

e Ports can now be designated as textual or binary ports,
with new procedures for reading and writing binary
data. The new predicate port-open? returns whether
a port is open or closed.

e String ports have been added as a way to read and
write characters to and from strings, and bytevector
ports to read and write bytes to and from bytevectors.

The procedures current-input-port and
current-output-port are now parameter objects, as
is the newly introduced current-error-port.

The syntax-rules construct now recognizes _ (under-
score) as a wildcard, allows the ellipsis symbol to be
specified explicitly instead of the default ..., allows
template escapes with an ellipsis-prefixed list, and al-
lows tail patterns to follow an ellipsis pattern.

The syntax-error syntax has been added as a way to
signal immediate and more informative errors when a
macro is expanded.

Internal define-syntax definitions are now allowed
wherever internal defines are.

The letrec* binding construct has been added, and
internal define is specified in terms of it.

Support for capturing multiple values has been
enhanced with define-values, let-values, and
let*-values. Programs are now explicitly permitted
to pass zero or more than one value to continuations
which discard them.

The case conditional now supports a => syntax anal-
ogous to cond.

To support dispatching on the number of arguments
passed to a procedure, case-lambda has been added
in its own library.

The convenience conditionals when and unless have
been added.

Positive infinity, negative infinity, NaN, and nega-
tive inexact zero have been added to the numeric
tower as inexact values with the written representa-
tions +inf .0, -inf.0, +nan.0, and -0.0 respectively.

The procedures map and for-each are now required
to terminate on the shortest list when inputs have dif-
ferent length.

The procedures member and assoc now take an op-
tional third argument specifying the equality predicate
to be used.

The procedures exact-integer? and
exact-integer-sqrt have been added.

The procedures make-list, list-copy, list-set!,
string-map, string-for-each, string->vector,
vector-copy, vector-map, vector-for-each, and
vector->string have been added to round out the
sequence operations.



e Implementations may provide any subset of the full
Unicode repertoire that includes ASCII, but imple-
mentations must support any such subset in a way
consistent with Unicode. Various character and string
procedures have been extended accordingly. String
comparison remains implementation-dependent, and
is no longer required to be consistent with character
comparison, which is based on Unicode code points.
The new digit-value procedure is added to obtain
the numerical value of a numeric character.

e The procedures string-ni=7 and related procedures
have been added to compare strings as though they
had gone through an implementation-defined normal-
ization, without exposing the normalization.

e The case-folding behavior of read can now be explic-
itly controlled, with no folding as the default.

e There are now two additional comment syntaxes: #;
to skip the next datum, and #| ... |# for nestable
block comments.

e Data prefixed with datum labels #<n>= can be refer-
enced with #<n># allowing for reading and writing of
data with shared structure.

e Strings and symbols now allow mnemonic and numeric
escape sequences, and the list of named characters has
been extended.

e The procedures file-exists? and delete-file are
available in the (scheme file) library.

e An interface to the system environment and command
line is available in the (scheme process-context) li-
brary.

e Procedures for accessing the current time are available
in the (scheme time) library.

e A complete set of integer division operators is available
in the (scheme division) library.

e The load procedure now accepts a second argument
specifying the environment to load into.

e The procedures transcript-on and transcript-off
have been removed.

e The semantics of read-eval-print loops are now partly
prescribed, allowing the retroactive redefinition of pro-
cedures but not syntax keywords.

Incompatibilities with the main R°RS document

This section enumerates the incompatibilities between
R7RS and the “Revised® report” [1].

The list is incomplete and subject to change while this
report is in draft status.
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e The syntax of the library system was deliberately cho-

sen to be syntactically different from RSRS, using
define-library instead of library in order to al-
low easy disambiguation between R°RS and R”RS li-
braries.

The library system does not support phase distinc-
tions, which are unnecessary in the absence of low-
level macros (see below), nor does it support version-
ing, which is an important feature but deserves more
experimentation before being standardized.

Putting an extra level of indirection around the li-
brary body allows room for extensibility. The R°RS
syntax provides two positional forms which must be
present and must have the correct keywords, export
and import, which does not allow for unambiguous ex-
tensions. The Working Group considers extensibility
to be important, and so chose a syntax which provides
a clear separation between the library declarations and
the Scheme code which makes up the body.

The include library declaration makes it easier to in-
clude separate files, and the include-ci variant allows
legacy case-insensitive code to be incorporated.

The cond-expand library declaration based on SRFI
0 allows for a more deterministic alternative to the
RORS .impl.sls file naming convention.

Since the R7RS library system is straightforward, we
expect that R°RS implementations will be able to sup-
port the define-library syntax in addition to their
library syntax.

The grouping of standardized identifiers into libraries
is different from the RSRS approach. In particular,
procedures which are optional either expressly or by
implication in R?RS have been removed from the base
library. Only the base library is an absolute require-
ment.

Identifier syntax is not provided. This is a useful
feature in some situations, but the existence of such
macros means that neither programmers nor other
macros can look at an identifier in an evaluated po-
sition and know it is a reference — this in a sense
makes all macros slightly weaker. Individual imple-
mentations are encouraged to continue experimenting
with this and other extensions before further standard-
ization is done.

Internal syntax definitions are allowed, but all ref-
erences to syntax must follow the definition; the
even/odd example given in RRS is not allowed.

The RPRS exception system was incorporated as is,
but the condition types have been left unspecified.
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Specific errors that must be signalled in R°RS remain
errors in R'RS, allowing implementations to provide
their own extensions. There is no discussion of safety.

Full Unicode support is not required. Instead
of explicit normalization forms this report provides
normalization-insensitive string comparisons that use
an implementation-defined normalization form (which
may be the identity transformation). Character com-
parisons are defined by Unicode, but string compar-
isons are implementation-dependent, and therefore
need not be the lexicographic mapping of the corre-
sponding character comparisons (an incompatibility
with R5RS). Non-Unicode characters are permitted.

The full numeric tower is optional as in R®RS,
but optional support for IEEE infinities, NaN, and
-0.0 was adopted from R®RS. Most clarifications on
numeric results were also adopted, but the RSRS
procedures real-valued?, rational-valued?, and
integer-valued? were not. The R®RS names
inexact->exact for exact and exact->inexact for
inexact were retained, with a note indicating that
their names are historical. The R®RS division op-
erators div, mod, div-and-mod, div0, mod0 and
divO-and-mod0 have been replaced with a full set of
18 operators describing 6 different rounding semantics.

When a result is unspecified, it is still required to be
a single value, in the interests of R°RS compatibility.
However, non-final expressions in a body may return
any number of values.

Because of widespread SRFI 1 support and extensive
code that uses it, the semantics of map and for-each
have been changed to use the SRFI 1 early termination
behavior. Likewise assoc and member take an optional
equal? argument as in SRFI 1, instead of the separate
assp and memp procedures from R6RS.

The RSRS quasiquote clarifications have been
adopted, but the Working Group has not seen con-
vincing enough examples to allow multiple-argument
unquote and unquote-splicing.

The R°RS method of specifying mantissa widths was
not adopted.

Incompatibilities with the RSRS Standard Li-

braries document

This section enumerates the incompatibilities between
R7RS and the RSRS [1] Standard Libraries.

The list is incomplete and subject to change while this

report is in draft status.

e The low-level macro system and syntax-case were

not adopted. There are two general families of macro
systems in widespread use — the syntax-case family
and the syntactic-closures family — and they have
neither been shown to be equivalent nor capable of
implementing each other. Given this situation, low-
level macros have been left to the large language.

The new I/O system from R®RS was not adopted.
Historically, standardization reflects technologies that
have undergone a period of adoption, experimenta-
tion, and usage before incorporation into a stan-
dard. The Working Group was unhappy with the re-
dundant provision of both the new system and the
R°RS-compatible “simple I/O” system, which rele-
gated R°RS code to being a second-class citizen. How-
ever, binary I/O was added using binary ports that are
at least potentially disjoint from textual ports and use
their own parallel set of procedures.

String ports are compatible with SRFI 6 rather than
RSRS; analogous bytevector ports are also provided.

The Working Group felt that the R°RS records sys-
tem was overly complex, and the two layers poorly
integrated. The Working Group spent a lot of time
debating this, but in the end decided to simply use a
generative version of SRFI 9, which has near-universal
support among implementations. The Working Group
hopes to provide a more powerful records system in the
large language.

Enumerations are not included in the small language.

RSRS-style bytevectors are included, but provide only
the “u8” procedures in the small language. The lexical
syntax uses #u8 for compatibility with SRFI 4, rather
than the RRS #vu8 style. With a library system, it’s
easier to change names than reader syntax.

The utility macros when and unless are provided, but
since it would be meaningless to try to use their result,
it is left unspecified.

The Working Group could not agree on a single design
for hash tables and left them for the large language.

Sorting, bitwise arithmetic, and enumerations were
not considered to be sufficiently useful to include in
the small language. They will probably be included in
the large language.

Pair and string mutation are too well-established to
be relegated to separate libraries.

ADDITIONAL MATERIAL

The Internet Scheme Repository at



http://www.cs.indiana.edu/scheme-repository/

contains an extensive Scheme bibliography, as well as pa-
pers, programs, implementations, and other material re-
lated to Scheme.

The Scheme community website at
http://schemers.org/

contains  additional resources for learnin and
rograminin job and event postings, and Scheme
user group information.

A bibliography of Scheme-related research at
http://1library.readscheme.org/

links to technical papers and theses related to the Scheme
language, including both classic papers and recent research.

Example 73

EXAMPLE

The procedure Integrate-systemintegrate-system
integrates the system

y;g:fk(yhy%"'ayn), kzl,"'an

of differential equations with the method of Runge-Kutta.

The parameter system-derivative is a function that
takes a system state (a vector of values for the state vari-
ables y1, . ..,y,) and produces a system derivative (the val-
ues yi,...,4,). The parameter initial-state provides
an initial system state, and h is an initial guess for the
length of the integration step.

The value returned by integrate-system is an infi-
nite stream of system states.

(define integrate-system
(lambda (system-derivative initial-state h)
(let ((next (runge-kutta-4 system-derivative h)))
(letrec ((states
(cons initial-state
(delay (map-streams next
states)))))
states))))

The procedure Runge-Kutta-4runge-kuttac4 takes
a function, f, that produces a system derivative from a

system state. Runge-Jcutta-4lt produces a function that
takes a system state and produces a new system state.

(define runge-kutta-4
(lambda (f h)
(let ((xh (scale-vector h))
(*2 (scale-vector 2))
(x1/2 (scale-vector (/ 1 2)))
(x1/6 (scale-vector (/ 1 6))))
(lambda (y)
;5 ¥y is a system state
(letx ((k0 (*h (f y)))
(k1 (#h (£ (add-vectors y (*1/2 k0)))))
(k2 (#h (f (add-vectors y (*1/2 k1)))))
(k3 (*h (f (add-vectors y k2)))))
(add-vectors y
(x¥1/6 (add-vectors kO
(%2 k1)
(*¥2 k2)
k3))))))))

(define elementwise
(lambda (f)
(lambda vectors
(generate-vector

(vector-length (car vectors))
(lambda (i)
(apply £

(map (lambda (v) (vector-ref v i))
vectors)))))))
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(define generate-vector
(lambda (size proc)
(let ((ans (make-vector size)))
(letrec ((loop
(lambda (i)
(cond ((= i size) ans)
(else
(vector-set! ans i (proc i))
(loop (+ i DIINN
(Loop 0)))))

(define add-vectors (elementwise +))

(define scale-vector
(lambda (s)
(elementwise (lambda (x) (* x s)))))

The Mep-streamsmap-streams procedure is analo-
gous to map: it applies its first argument (a procedure)

to all the elements of its second argument (a stream).

(define map-streams
(lambda (f s)
(cons (f (head s))
(delay (map-streams f (tail s))))))

Infinite streams are implemented as pairs whose car
holds the first element of the stream and whose cdr holds
a promise to deliver the rest of the stream.

(define head car)
(define tail
(lambda (stream) (force (cdr stream))))

The following illustrates the use of integrate-system
in integrating the system

dvc . vo
dve _ _, _vC
dt ™R
diy,
Li =
a C

which models a damped oscillator.

(define damped-oscillator
(lambda (R L C)
(lambda (state)
(let ((Vc (vector-ref state 0))
(I1 (vector-ref state 1)))
(vector (- 0 (+ (/ Ve (*x R C)) (/ I1 O)))
(/ Ve L))

(define the-states
(integrate-system
(damped-oscillator 10000 1000 .001)
#(1 0)
.01))
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ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS,
KEYWORDS, AND PROCEDURES

The principal entry for each term, procedure, or keyword is  bytevector-u8-set! 45
listed first, separated from the other entries by a semicolon.  bytevector? 45; 9

17
’ 125 38
* 33
+ 33; 61
, 19; 38
,0 19
- 34
-> 7

7
.21
/ 34
;8
< 33; 61
<= 33
= 33
=> 14
> 33
>= 33
? 7
_ 21
€20

abs 34; 36
acos 35
and 14; 62
angle 36
append 39
apply 46; 11, 62
asin 35
assoc 40
assq 40
assv 40
atan 35

#b 32; 57

backquote 19

begin 16; 23, 24, 27, 64
binary-port? 51

binding 9

binding construct 9
boolean? 37;9

bound 9

byte 45

bytevector-copy 46
bytevector-copy! 46
bytevector-copy-partial 46
bytevector-copy-partial! 46
bytevector-length 45; 31
bytevector-u8-ref 45

bytevectors 45

caaaar 38
caaadr 38
caaar 38
caadar 38
caaddr 38
caadr 38
caar 38
cadaar 38
cadadr 38
cadar 38
caddar 38
cadddr 38
caddr 38
cadr 38
call 12
call by need 17

call-with-current-continuation 47; 11, 49, 62

call-with-input-file 51
call-with-output-file 51
call-with-port 51
call-with-values 48; 11, 62
call/cc 47; 48

car 38; 61

case 14; 62
case-lambda 20; 24, 66
catch 48

cdaaar 38

cdaadr 38

cdaar 38

cdadar 38

cdaddr 38

cdadr 38

cdar 38

cddaar 38

cddadr 38

cddar 38

cdddar 38

cddddr 38

cdddr 38

cddr 38

cdr 38

ceiling 35
ceiling-quotient 34
ceiling-remainder 34
ceiling/ 34
centered-quotient 34
centered-remainder 34
centered/ 34



char->integer 42
char-alphabetic? 41
char-ci<=7 41
char-ci<? 41
char-ci=7 41
char-ci>=7 41
char-ci>? 41
char-downcase 42
char-foldcase 42
char-lower-case? 41
char-numeric? 41
char-ready? 53
char-upcase 42
char-upper-case? 41
char-whitespace? 41
char<=7 41

char<? 41

char=7 41

char>=7 41

char>? 41

char? 41;9
close-input-port 52
close-output-port 52
close-port 52
comma 19
command-line 55
comment 8; 56
complex? 32; 30, 33
cond 13; 22, 62
cond-expand 27
cons 38

constant 10
continuation 48

cos 35

current exception handler 49

current—error-port 51
current-input-port 51
current-jiffy 55

current-output-port 51

current-second 55

#d 32

define 24; 20
define-syntax 25
define-values 24; 64
definition 23

delay 17
delete-file 55
denominator 35
digit-value 41
display 54

do 17; 64

dotted pair 37
dynamic-wind 49; 48

#e 32; 57

Index

eager 18

else 14;27

empty list 37; 9, 38
environment 50; 55, 10
environment variables 55
eof-object? 53

eq? 29

equal? 30

equivalence predicate 28
eqv? 28; 10, 61

error H; 50
error-object-irritants 50
error-object-message 50
error-object? 50
escape procedure 47
escape sequence 42
euclidean-quotient 34
euclidean-remainder 34
euclidean/ 34

eval 50; 11

even? 33

exact 28
exact->inexact 36
exact-integer-sqrt 35
exact-integer? 33
exact? 33

exactness 30

except 26

exception handler 49
exit 55

exp 35

export 26

expt 36

#f 37

false 9; 37

fields 25
file-exists? 55
finite? 33

floor 35
floor-quotient 34
floor-remainder 34
floor/ 34
flush-output-port 54
fold-case@#!fold-case 8
for-each 47

force 17

ged 34
get-environment-variable 55
get-environment-variables 55
get-output-bytevector 52
get-output-string 52

guard 19; 24

hygienic 20

7
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#i 32; 57

identifier 7; 9, 56

if 13; 60

imag-part 36

immutable 10
implementation extension 31
implementation restriction 6; 31
import 26

improper list 38

include 27

include-ci 27

inexact 28
inexact->exact 36; 30
inexact? 33

initial environment 28
input-port? 51
integer->char 42
integer? 32; 30
interaction-environment 51
internal definition 24
irritants 50

jiffies 55
jiffies-per-second 55

keyword 20

lambda 12; 24, 60
lazy 17

lazy evaluation 17
lem 34

length 39; 31

let 15; 17, 22, 24, 63
let* 15; 24, 63
let*-values 16; 63
let-syntax 20; 24
let-values 16; 24, 63
let-values* 24
letrec 15; 24, 63
letrecx 16; 24, 63
letrec-syntax 21; 24
libraries 5

list 37; 39
list->string 44
list->vector 45
list-copy 40
list-ref 39
list-set! 39
list-tail 39
list? 38

load bH4

location 10

log 35

macro 20
macro keyword 20

macro transformer 20
macro use 20
magnitude 36
make-bytevector 45
make-list 39
make-parameter 18
make-polar 36
make-rectangular 36
make-string 43
make-vector 44
map 46

max 33

member 39

memq 39

memv 39

min 33

modulo 34

mutable 10

nan? 33
negative? 33
newline 54

nil 37
no-fold-case@#!no-fold-case 8
not 37

null-environment 50

null? 38

number 30
number->string 36
number? 32; 9, 30, 33
numerator 35
numerical types 30

#o 32; 57

object 5

odd? 33

only 26
open-binary-input-file 52
open-binary-output-file 52
open-input-bytevector 52
open-input-file 52
open-input-string 52
open-output-bytevector 52
open-output-file 52
open-output-string 52

or 14; 62

output-port? 51

pair 37

pair? 38; 9
parameter object 18
parameterize 18;24
peek-char 53
peek-u8 53

port 51

port-open? 51



port? 51;9
positive? 33
predicate 28

prefix 26

procedure 28
procedure call 12
procedure? 46; 9
program parts 23
promise 17

proper tail recursion 10

quasiquote 19; 38
quote 12; 38
quotient 34

raise 49
raise-continuable 49
rational? 32; 30
rationalize 35

read b52; 38, 57
read-bytevector 53
read-bytevector! 53
read-char 52
read-line 53
read-u8 53
real-part 36

real? 32; 30

record type definitions 25
record types 25
records 25

referentially transparent 20

region 9; 13, 15, 16, 17
remainder 34
rename 26

repl 23

reverse 39

round 35
round-quotient 34
round-remainder 34
round/ 34

scheme-report-environment 50

set! 13; 24, 60
set-car! 38
set-cdr! 38
setcar 61
simplest rational 35
sin 35

sqrt 35

string 43
string->list 44
string->number 37
string->symbol 40
string->utf8 46
string->vector 45
string-append 44

string-ci<=7 43
string-ci<? 43
string-ci=7? 43
string-ci>=7 43
string-ci>? 43
string-copy 44
string-downcase 44
string-fill! 44
string-foldcase 44
string-for-each 47
string-length 43; 31
string-map 46
string-ni<=7 43
string-ni<? 43
string-ni=7 43
string-ni>=7 43
string-ni>? 43
string-ref 43
string-set! 43; 40
string-upcase 44
string<=? 43
string<? 43
string=7 43
string>=7? 43
string>? 43
string? 42;9
substring 44
symbol->string 40; 10
symbol? 40; 9
syntactic keyword 9; 7, 20
syntax definition 25
syntax-error 23
syntax-rules 25

#t 37

tail call 11

tan 35
textual-port? 51
token 56

top level environment 28; 9

true 9; 13, 14, 37
truncate 35
truncate-quotient 34
truncate-remainder 34
truncate/ 34

type 9

u8-ready? 53
unbound 9; 12, 24
unless 15

unquote 38
unquote-splicing 38
unspecified 6
utf8->string 46

valid indexes 42; 44, 45
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values 48; 12
variable 9; 7, 12
vector 44
vector->list 45
vector->string 45
vector-copy 45
vector-fill! 45
vector-for-each 47
vector-length 45; 31
vector-map 47
vector-ref 45
vector-set! 45
vector? 44;9

when 14

whitespace 8
with-exception-handler 49
with-input-from-file 51
with-output-to-file 51
write 54; 20
write-bytevector 54
write-char 54
write-partial-bytevector 54
write-simple 54

write-u8 54

#x 32; 57

zero? 33
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